Representing Text with Vectors

Machine Learning for Natural Language Processing, ENSAE 2022

Lecture 2

Benjamin Muller, INRIA Paris

Lectures Outline

- 1. The Basics of Natural Language Processing (February 1st)
- 2. Representing Text with Vectors (February 1st)
- 3. Deep Learning Methods for NLP (February 8th)
- 4. Language Modeling (February 8th)
- 5. Sequence Labelling (Sequence Classification) (February 15th)
- 6. Sequence Generation Tasks (February 15th)

Today Lecture Outline

- Representing Words in Vectors
- **Representing Documents** in Vectors

Representation Techniques

- → Hand-Crafted Feature-Based Representation
- → Count-Based Representation
- → **Prediction-Based** Representation

Framework

We assume:

- A **token** is the basic unit of discrete data, defined to be an item from a vocabulary indexed by 1, ..., V.
- A document is a sequence of N words denoted by d = (w1,w2, ...,wN), where wn is the Nth word in the sequence.
- A corpus is a collection of M documents denoted by D = (d1, d2, ..., dM)

Framework

We assume:

- A **token** is the basic unit of discrete data, defined to be an item from a vocabulary indexed by 1, ..., V.
- A document is a sequence of N words denoted by d = (w1,w2, ...,wN), where wn is the Nth word in the sequence.
- A corpus is a collection of M documents denoted by D = (d1, d2, ..., dM)

In this lecture, a token will be a word

What is a word?

There are many ways to define a word based on what aspect of language we consider (typography, syntax, semantics...)

Definition (Semantic):

Words are **the smallest linguistic expressions** that are **conventionally** associated with a **non-compositional meaning** and can be articulated in isolation to convey semantic content.*

Objective

Given a vocabulary w1,...,wV and a corpus D, our goal is to associate each word with a representation?

What do we want from this representation?

- identify a word (bijection)
- capture the similarities of words (based on morphology, syntax, semantics,...)
- Help us solve downstream tasks

NB: Vector-based representations of text are called *embedding*

1-Hot Encoding

Traditional way to represent words **as atomic symbols** with a unique integer associated with each word: {1=movie, 2=hotel, 3=apple, 4=movies, 5=art}

Equivalent to represent words as 1-hot vectors:

movie = [1, 0, 0, 0, 0] hotel = [0, 1, 0, 0, 0] ... art = [0, 0, 0, 0, 1]

1-Hot Encoding

Most basic representation of any textual unit in NLP. Always start with it.

Implicit assumption: word vectors are an orthonormal basis

- orthogonal
- normalized

Problem 1: Not very informative

→ Weird to consider "movie" and "movies" as independent entities or to consider all words equidistant:

house - home # = # house - car#

Problem 2: Polysemy

→ Should the Mouse of a computer get the same vector a the mouse animal?

Hand-Crafted Feature Representation

Example of potential features:

- Morphology: prefix, suffix, stem...
- Grammar: part of speech, gender, number,...
- Shape: capitalization, digit, hyphen

Those features can be defined based on **relations** to other words

- Synonyms of...
- Hypernyms of...
- Antonyms of...

Hand-Crafted Feature Representation

Example of potential features:

- Morphology: prefix, suffix, stem...
- Grammar: part of speech, gender, number,...
- Shape: capitalization, digit, hyphen

Those features can be defined based on **relations** to other words

- Synonyms of...
- Hypernyms of...
- Antonyms of...

We present one popular hand-crafted semantically based representation of words ⇒ the WordNet

Definition: a (word) sense is a discrete representation **of one aspect of the meaning of a word**

WordNet is a large lexical database of **word senses** for English and other languages

- Word types are grouped into (cognitive) synonym sets: **synsets** S09293800={*Earth,earth,world,globe*}
- Polysemous words: assigned to different synsets S14867162 ={earth,ground}
- Contains glosses for synsets: the 3rd planet from the sun; the planet we live on
- Noun/verb synsets: organized in hierarchy, capturing IS-A relation apple IS-A fruit

X is a **hyponym** of Y if **X is an instance of Y**: cat is a hyponym of animal

X is a hypernym of Y if Y is an instance of X: animal is a hypernym of cat

X and Y are **co-hyponyms** if they have the **same hypernym**: cat and dog are co-hyponyms

X is a meronym of Y if X is a part of Y: wheel is a meronym of car

X is a holonym of Y if Y is a part of X: car is a holonym of wheel

Similarity

$$\mathsf{sim}(S_1,\ S_2) = rac{1}{\mathsf{length}(\mathsf{path}(S_1,\ S_2))}$$
t:

Idea: The shorter the **hypernym/hyponym** path from one synset to another the higher is the similarity

Similarity
$$k \sin(w_1, w_2) = \max_{\substack{S_1, S_2 \\ w_1 \in S_1 \\ w_2 \in S_2}} \sin(S_1, S_2)$$
 is:

Example: sim(*dog*, *cat*) = ? <u>f notebook</u>

Hand-Crafted Representations: Limits

- Requires a lot of human annotations
- **Subjectivity** of the annotators
- **Does not adapt** to new words (languages are not stationary!): Mocktail, Guac, Fave, Biohacking were added to the Merriam-Webster Dictionary in 2018
- → It does not scale easily to new languages, new concepts, new words...

How to Infer "Good" Representations with Data?

Distributional Hypothesis

You shall know a word by the company it keeps" Firth (1957)

Idea: Model the *context* of a word to build its vectorial representation

• He handed her a glass of bardiwac.

- He handed her a glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.

- He handed her a glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.

- He handed her a glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.
- Malbec, one of the lesser-known bardiwac grapes, responds well to Australia's sunshine.

- He handed her a glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.
- Malbec, one of the lesser-known bardiwac grapes, responds well to Australia's sunshine.
- I dined off bread and cheese and this excellent bardiwac

- He handed her a glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.
- Malbec, one of the lesser-known bardiwac grapes, responds well to Australia's sunshine.
- I dined off bread and cheese and this excellent bardiwac
- The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.

- He handed her a glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.
- Nigel staggered to his feet, face flushed from too much bardiwac.
- Malbec, one of the lesser-known bardiwac grapes, responds well to Australia's sunshine.
- I dined off bread and cheese and this excellent bardiwac
- The drinks were delicious: blood-red bardiwac as well as light, sweet Rhenish.

 \rightarrow bardiwac is a heavy red alcoholic beverage made from grapes

Distributional word representation in a nutshell

- 1. Define what is *the context* of a word
- 2. **Count** how many times each target word occurs in this context
- 3. Build vectors out of (a function of) these context occurrence counts

$$x_w = f(w, Context(w))$$

How to define "the context" of a word?

It can be defined as

- The surrounding words (left and right words)
- All the other words of the sentence/the paragraph
- All the words after preprocessing and filtering-out some words

How to Model the Context to get

$$x_w = f(w, Context(w))$$

Approach 1: Count-Based

- 1. Measure frequency of words in the context for each word in the vocabulary
- 2. Define vector representations based on those frequency

How to Model the Context to get

$$x_w = f(w, Context(w))$$

Approach 1: Count-Based

- 1. Measure frequency of words in the context for each word in the vocabulary
- 2. Define vector representations based on those frequency

Approach 2: Prediction Based

Counting the Occurences of the words in the context of dog

The dog barked in the park. The owner of the dog put him on the leash since he barked.

Co-Occurrence Matrix

	leash	walk	run	owner	pet	barked
dog	3	5	2	5	3	2
cat	0	3	3	2	3	0
lion	0	3	2	0	1	0
light	0	0	0	0	0	0
bark	1	0	0	2	1	0
car	0	0	1	3	0	0

Define vector representation based on the Co-Occurrence

	leash	walk	run	owner	pet	barked	the
dog	3	5	2	5	3	2	8
lion	0	3	2	0	1	0	6
light	0	0	0	0	0	0	5
bark	1	0	0	2	1	0	0
car	0	0	1	3	0	0	3

• Naïve Approach: Take the row of the co-occurrence matrix

Define vector representation based on the Co-Occurrence

	leash	walk	run	owner	pet	barked	the
dog	3	5	2	5	3	2	8
lion	0	3	2	0	1	0	6
light	0	0	0	0	0	0	5
bark	1	0	0	2	1	0	0
car	0	0	1	3	0	0	3

Limits: <u>f notebook</u>

- Representations depends on the size of the corpus
- Frequent words impacts a lot the representations
- Representations very sensitive to change in very infrequent words

Solution: Pointwise Mutual Information (PMI)

Idea: Instead of absolute co-occurrence statistics, use probability (relative) of co-occurrences

$$PMI(w_1, w_2) = \log \frac{P(w_1, w_2)}{P(w_1)P(w_2)}$$

Solution: Pointwise Mutual Information (PMI)

Idea: Instead of absolute co-occurrence statistics, use probability (relative) of co-occurrences

$$PMI(w_1, w_2) = \log \frac{P(w_1, w_2)}{P(w_1)P(w_2)}$$

Intuition

• The more dependent *dog* and *cat* the closer P(dog, cat) is from P(dog)P(cat) the smaller the PMI

Solution: Pointwise Mutual Information (PMI)

Idea: Instead of absolute co-occurrence statistics, use probability (relative) of co-occurrences

$$PMI(w_1, w_2) = \log \frac{P(w_1, w_2)}{P(w_1)P(w_2)}$$

Intuition

• The more dependent *dog* and *cat* the closer P(dog, cat) is from P(dog)P(cat) the smaller the PMI

$$PMI(w_1, w_2) = \log \frac{\frac{1}{n_{pairs}} \#\{(w_1, w_2)\}}{\frac{1}{n_{word}} \#\{w_1\} \frac{1}{n_{word}} \#\{w_2\})}$$
Pointwise Mutual Information (PMI)

	leash	walk	run	owner	pet	barked	the
dog	2.75	2.24	3.16	2.24	2.75	3.16	1.77
lion	0	2.75	3.16	0	3.85	0	2.06
car	0	0	3.85	2.75	0	0	2.75

Word embedding vectors are the row of the PMI matrix

- We take usually take the Positive PMI (assigned to 0 when negative) + Smooth unobserve pairs (Laplace smoothing: add 1)
- Does not depend on size of the corpus (the PMI is normalized)
- Much less sensitive to change in frequent words (log)

Pointwise Mutual Information (PMI)

Limits:

- Very large matrix O(V^2) ! Very large word vectors
- Hard to use large vectors in practice (i.e. 1M word vocabulary)
- Cannot compare word vectors estimated on 2 different corpora unless they have exactly the same vocabulary!

Idea: Build vectors with predefined size based on the PMI matrix
 → Dimensionality Reduction Technique

Singular Value Decomposition (SVD)

We can decompose the PMI Matrix with SVD

- 1. We build a symmetric definite matrix based on the PMI
- 2. We decompose it $P = U_d \Sigma_d V_d^T$ SVD
- 3. U is of size (V, d) gives us the representation of each word in a latent/embedding space

Properties of SVD:

- U is a orthonormal matrix
- U aggregates the highest variance of the original word embeddings

Limits of Dimensionality Reduction Approach

- Need to store a matrix of size O(V^2)
- SVD is O(V*d^2)

→ It is inefficient to build a very large matrix for reducing: Can we do both simultaneously?

Solution: Prediction-Based Word Embedding Approaches

Prediction-Based Model

Idea:

- Learn directly dense word vectors
- Using the *distributional hypothesis*
- Implicitly, by parameterizing words as dense vectors
- and learning to predict context using this parametrization

Many word embedding methods use these ideas successfully

We present the *word2vec skip-gram* model (one of the most popular)

For each Sentence

- 1. Sample a target word
- 2. Predict *context words* defined as words in a fixed window from the target word

my dog is barking and chasing its tail

For each Sentence

- 1. Sample a target word
- 2. Predict *context words* defined as words in a fixed window from the target word

Given $d \in \mathbb{N}$, let $\mathbf{W} \in \mathbb{R}^{(V,d)}$ and $\mathbf{C} \in \mathbb{R}^{(V,d)}$ two word representations (or word *embedding*) matrices. For each sequence $(w_1, ..., w_T)$:

- Pick a *focus* word w, associated to the vector $\mathbf{w} \in \mathbb{R}^d$ (**w** is the row associated to w in **W**)
- Pick a *context* word c, associated to the vector $\mathbf{c} \in \mathbb{R}^d$ (c is the row associated to c in C)
- Maximize $\max_{\mathbf{W} \in \mathbb{R}^{(V,d)}, \mathbf{C} \in \mathbb{R}^{(V,d)}} \log p(c|w)$ (maximum likelihood estimator)

my dog is barking and chasing its tail

- 1. How to define $\log p(c|w)$
- 2. How to optimize $\log p(c|w)$?

2

- 1. How to define $\log p(c|w)$
- 2. How to optimize $\log p(c|w)$?

Intuition

- This is a classification problem
- The labels we want to predict are the context words
- Classification with a very large number of labels (V~100K)

Ideas:

- → Softmax
- → Simplify the softmax with **Negative Sampling** for Efficiency

7

Softmax of dot-products context vs. words vectors:

We compute the log-likelihood, our objective function, as:

$$\log p(c|w) = \mathbf{w.c} - \log \sum_{\mathbf{v}} e^{\mathbf{w.v}}$$

Limits: O(V) to compute the loss (at every iteration)

→ Negative Sampling

Idea: Instead of computing the probability objective over the entire vocabulary (all the *V-1* negative context words)

→ We sample *K* words that are not in the context of w $v \in N_K$ (K<<V)

Idea: Instead of computing the probability objective over the entire vocabulary (all the *V-1* negative context words)

→ We sample *K* words that are not in the context of w $v \in N_K$ (K<<V)

New objective function:

$$\sigma(\mathbf{w}, \mathbf{c}) + \frac{1}{K} \sum_{v \in N_K} \log \sigma(-\mathbf{w}, \mathbf{v}) \text{ with } \sigma(\mathbf{x}, \mathbf{y}) = \frac{1}{1 + e^{-\mathbf{x} \cdot \mathbf{y}}}$$

Idea: Instead of computing the probability objective over the entire vocabulary (all the *V-1* negative context words)

→ We sample *K* words that are not in the context of w $v \in N_K$ (K<<V)

New objective function:

$$\sigma(\mathbf{w}, \mathbf{c}) + \frac{1}{K} \sum_{v \in N_K} \log \sigma(\textbf{-w, v}) \text{ with } \sigma(\mathbf{x}, \mathbf{y}) = \frac{1}{1 + e^{\textbf{-x} \cdot \mathbf{y}}}$$

Complexity?

Idea: Instead of computing the probability objective over the entire vocabulary (all the *V-1* negative context words)

→ We sample *K* words that are not in the context of w $v \in N_K$ (K<<V)

New objective function:

$$\sigma(\mathbf{w}, \mathbf{c}) + \frac{1}{K} \sum_{v \in N_K} \log \sigma(\textbf{-w, v}) \text{ with } \sigma(\mathbf{x}, \mathbf{y}) = \frac{1}{1 + e^{-\mathbf{x} \cdot \mathbf{y}}}$$

→ O(K) to compute with K independent of V

Algorithm 1 Skip-Gram Word2vec Training

Given a corpus C, made of a set of unique tokens V. Hyperparameters: number of negative samples K, a window size l, dimension of word vectors d, learning rate (α_t)

Initalize Randomly: $\mathbf{W} \in \mathbb{R}^{(v,d)}$ and $\mathbf{C} \in \mathbb{R}^{(v,d)}$

for step t in 0..T do ### Step 1: Sampling Sample $s = (w_1, ..., w_n) \in C$ # a sequence in your corpus (e.g. sentence) Sample a pair $(i, j) \in [1, ..., n]$ with $|i - j| \leq l$ we note $w = w_i, c = w_j$ represented by vectors w in W and c in C Sample $N_K = \{v_1, ..., v_K\} \subset V$ represented by $\{\mathbf{v}_1, ..., \mathbf{v}_K\}$ in C # Negative samples ### Step 2: Compute loss $l(\mathbf{W}, \mathbf{C}) = -\sigma(\mathbf{w}, \mathbf{c}) - \frac{1}{K} \sum_{v \in N_K} log \sigma(-\mathbf{w}, \mathbf{v})$ ### Step 3: Parameter update with SGD $\mathbf{W}_t = \mathbf{W}_{t-1} - \alpha_t . \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})$ $\mathbf{C}_t = \mathbf{C}_{t-1} - \alpha_t . \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})$ end

Algorithm 1 Skip-Gram Word2vec Training

Given a corpus C, made of a set of unique tokens V. Hyperparameters: number of negative

samples K, a window size l, dimension of word vectors d, learning rate (α_t) Initalize Randomly: $\mathbf{W} \in \mathbb{R}^{(V,d)}$ and $\mathbf{C} \in \mathbb{R}^{(V,d)}$

for step t in 0..T do

Step 1: Sampling Sample $s = (w_1, ..., w_n) \in C$ # a sequence in your corpus (e.g. sentence) Sample a pair $(i, j) \in [1, ..., n]$ with $|i - j| \leq l$ we note $w = w_i, c = w_j$ represented by vectors \mathbf{w} in \mathbf{W} and \mathbf{c} in \mathbf{C} Sample $N_K = \{v_1, ..., v_K\} \subset V$ represented by $\{\mathbf{v}_1, ..., \mathbf{v}_K\}$ in \mathbf{C} # Negative samples ### Step 2: Compute loss $l(\mathbf{W}, \mathbf{C}) = -\sigma(\mathbf{w}, \mathbf{c}) - \frac{1}{K} \sum_{v \in N_K} log \sigma(-\mathbf{w}, \mathbf{v})$ ### Step 3: Parameter update with SGD $\mathbf{W}_t = \mathbf{W}_{t-1} - \alpha_t . \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})$ $\mathbf{C}_t = \mathbf{C}_{t-1} - \alpha_t . \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})$

end

Algorithm 1 Skip-Gram Word2vec Training

Given a corpus C, made of a set of unique tokens V. Hyperparameters: number of negative samples K, a window size l, dimension of word vectors d, learning rate (α_t) **Initalize Randomly:** $\mathbf{W} \in \mathbb{R}^{(V,d)}$ and $\mathbf{C} \in \mathbb{R}^{(V,d)}$

for step t in 0 T do

Step 1: Sampling Sample $s = (w_1, ..., w_n) \in C$ # a sequence in your corpus (e.g. sentence) Sample a pair $(i, j) \in [1, ..., n]$ with $|i - j| \leq l$ we note $w = w_i, c = w_j$ represented by vectors \mathbf{w} in \mathbf{W} and \mathbf{c} in \mathbf{C} Sample $N_K = \{v_1, ..., v_K\} \subset V$ represented by $\{\mathbf{v}_1, ..., \mathbf{v}_K\}$ in \mathbf{C} # Negative samples ### Step 2: Compute loss $l(\mathbf{W}, \mathbf{C}) = -\sigma(\mathbf{w}, \mathbf{c}) - \frac{1}{K} \sum_{v \in N_K} log \sigma(-\mathbf{w}, \mathbf{v})$ ### Step 3: Parameter update with SGD $\mathbf{W}_t = \mathbf{W}_{t-1} - \alpha_t . \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})$ $\mathbf{C}_t = \mathbf{C}_{t-1} - \alpha_t . \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})$ end

Algorithm 1 Skip-Gram Word2vec Training

Given a corpus C, made of a set of unique tokens V. Hyperparameters: number of negative samples K, a window size l, dimension of word vectors d, learning rate (α_t) Initialize Randomly: $\mathbf{W} \in \mathbb{R}^{(V,d)}$ and $\mathbf{C} \in \mathbb{R}^{(V,d)}$ for step t in 0..T do ### Step 1: Sampling Sample $s = (w_1, ..., w_n) \in C \#$ a sequence in your corpus (e.g. sentence) Sample a pair $(i, j) \in [1, .., n]$ with $|i - j| \leq l$ we note $w = w_i, c = w_i$ represented by vectors **w** in **W** and **c** in **C** Sample $N_K = \{v_1, ..., v_K\} \subset V$ represented by $\{\mathbf{v}_1, ..., \mathbf{v}_K\}$ in **C** # Negative samples ### Step 2: Compute loss $l(\mathbf{W}, \mathbf{C}) = -\sigma(\mathbf{w}, \mathbf{c}) - \frac{1}{K} \sum_{v \in N_K} \log \sigma(-\mathbf{w}, \mathbf{v})$ ### Step 3: Parameter update with SCD $\mathbf{W}_t = \mathbf{W}_{t-1} - \alpha_t \cdot \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})$ $\mathbf{C}_t = \mathbf{C}_{t-1} - \alpha_t \cdot \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})$ end

Algorithm 1 Skip-Gram Word2vec Training

```
Given a corpus C, made of a set of unique tokens V. Hyperparameters: number of negative
samples K, a window size l, dimension of word vectors d, learning rate (\alpha_t)
Initialize Randomly: \mathbf{W} \in \mathbb{R}^{(V,d)} and \mathbf{C} \in \mathbb{R}^{(V,d)}
for step t in 0..T do
     ### Step 1: Sampling
     Sample s = (w_1, ..., w_n) \in C \# a sequence in your corpus (e.g. sentence)
     Sample a pair (i, j) \in [1, .., n] with |i - j| \leq l
     we note w = w_i, c = w_i represented by vectors w in W and c in C
     Sample N_K = \{v_1, ..., v_K\} \subset V represented by \{\mathbf{v}_1, ..., \mathbf{v}_K\} in C # Negative samples
     ### Step 2: Compute loss
     l(\mathbf{W}, \mathbf{C}) = -\sigma(\mathbf{w}, \mathbf{c}) - \frac{1}{K} \sum_{v \in N_K} \log \sigma(-\mathbf{w}, \mathbf{v})
     ### Step 3: Parameter update with SGD
    \mathbf{W}_{t} = \mathbf{W}_{t-1} - \alpha_{t} \cdot \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})\mathbf{C}_{t} = \mathbf{C}_{t-1} - \alpha_{t} \cdot \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})
епа
```

Loop over the dataset E times (number of epochs)

Complexity: O(d*K*T)

- → No Memory bottleneck
- Scale to Billion-tokens datasets

Algorithm 1 Skip-Gram Word2vec Training Given a corpus C, made of a set of unique tokens V. Hyperparameters: number of negative samples K, a window size l, dimension of word vectors d, learning rate (α_t) Initialize Randomly: $\mathbf{W} \in \mathbb{R}^{(V,d)}$ and $\mathbf{C} \in \mathbb{R}^{(V,d)}$ for step t in 0..T do ### Step 1: Sampling Sample $s = (w_1, ..., w_n) \in C \#$ a sequence in your corpus (e.g. sentence) Sample a pair $(i, j) \in [1, .., n]$ with $|i - j| \leq l$ we note $w = w_i$, $c = w_i$ represented by vectors **w** in **W** and **c** in **C** Sample $N_K = \{v_1, .., v_K\} \subset V$ represented by $\{\mathbf{v}_1, .., \mathbf{v}_K\}$ in **C** # Negative samples ### Step 2: Compute loss $l(\mathbf{W}, \mathbf{C}) = -\sigma(\mathbf{w}, \mathbf{c}) - \frac{1}{K} \sum_{v \in N_K} \log \sigma(-\mathbf{w}, \mathbf{v})$ ### Step 3: Parameter update with SGD $\mathbf{W}_t = \mathbf{W}_{t-1} - \alpha_t \cdot \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})$ $\mathbf{C}_t = \mathbf{C}_{t-1} - \alpha_t \cdot \nabla l(\mathbf{W}_{t-1}, \mathbf{C}_{t-1})$ end

Word2Vec Skip-Gram Model & the PMI

(Levy & Goldberg 2014) showed that

- Estimating the embedding matrix with Skip-Gram and Negative Sampling (SGNS)...
- ... is equivalent to computing the shifted-PMI matrix

Word2Vec Skip-Gram Model & the PMI

(Levy & Goldberg 2014) showed that

- Estimating the embedding matrix with Skip-Gram and Negative Sampling (SGNS)...
- ... is equivalent to computing the shifted-PMI matrix

$$M_{ij}^{\text{SGNS}} = W_i \cdot C_j = \vec{w}_i \cdot \vec{c}_j = PMI(w_i, c_j) - \log k$$

Word2Vec

- Still very popular in practice
- Works very well with Deep Learning architecture (e.g. LSTM models) to model specific tasks (e.g. NER)
- Recently "beaten" by contextualized approaches (BERT)

Extensions

- Lots of variant of the Skip-Gram exists (CBOW, Glove...)
- Multilingual setting: build shared representations across languages (fastext)

Limits

- Doesn't model morphology
- Fixed Vocabulary: What if we add new tokens in the vocabulary?
- **Polysemy**: Each token has a unique representation (e.g. cherry)

Evaluation of Word Embeddings

How to evaluate the quality of word embeddings?

Extrinsic Evaluation

• Use them in a task-specific model and measure the performance on your task (cf. lecture 5 & 6)

Intrinsic Evaluation

→ Idea: "similar" words should have similar vectors

What do we mean by "similar" words?

- Morphologically similar: e.g. *computer, computers*
- Syntactically similar: e.g. determiners
- Semantically similar: e.g. animal, cat

How to evaluate the quality of word embeddings?

Qualitative Evaluation

- Visualize word embedding space
- Case by case: look at nearest neighbors of given words

How to evaluate the quality of word embeddings?

Qualitative Evaluation

- Visualize word embedding space
- Case by case: look at nearest neighbors of given words

Quantitative Evaluation

• Is Word embedding similarity related with human judgment?

How to evaluate the quality of word embeddings?

Qualitative Evaluation

- Visualize word embedding space
- Case by case: look at nearest neighbors of given words

Quantitative Evaluation

• Is Word embedding similarity related with human judgment?

Visualization

Word Vectors are high dimensions (usually ~100)

- → **Project the word embedding vectors** using PCA or T-SNE
- → Visualize in 2D or 3D
- → Analyse the clusters

<u>notebook</u>

Intrinsic Evaluation of Word Embeddings

Figure: Visualize skip-gram trained on Wikipedia (1B tokens) (fastext.cc) vectors with PCA

66

How to measure similarity in the word embedding space?

• Cosine Similarity

$$sim(w_1, w_2) = cos(x_{w_1}, x_{w_2}) = \frac{x_{w_1}^T x_{w_2}}{||x_{w_1}|| ||x_{w_2}||}$$

• L2 Distance

$$sim(w_1, w_2) = L2(x_{w_1}, x_{w_2}) = ||x_{w_1} - x_{w_2}||$$

Nearest-Neighbor with the cosine similarity (skip-gram trained on Wikipedia (1B tokens))

moon	score	talking	score	blue	score
mars	0.615	discussing	0.663	red	0.704
moons	0.611	telling	0.657	yellow	0.677
lunar	0.602	joking	0.632	purple	0.676
sun	0.602	thinking	0.627	green	0.655
venus	0.583	talked	0.624	pink	0.612

We can **compare the similarity between words** in **the embedding space with human judgment**

- 1. **Collect Human Judgment** (or download dataset e.g. WordSim353) on a list of pairs of words
- 2. **Compute similarity** of the **word vectors** of those pairs
- 3. Measure correlation between both

Word 1	Word 2	Word2vec Cosine Similarity	Human Judgment
tiger	tiger	1.0	10
dollar	buck	0.3065	9.22
dollar	profit	0.3420	7.38
smart	stupid	0.4128	5.81

Application of Word Embeddings

- Downstream Tasks (Lecture 5 and 6)
- Word Sense Induction
- Semantic analysis (semantic shift in time, across communities...)

Representing Documents With Vectors

Representing Documents into Vectors

Similarly to what we saw for word-level representation we can **represent documents into vectors**

- 1. Using word vectors
- 2. Count-Based Representations
- 3. Generative Probabilistic Graphical Model (e.g. LDA seen in the lab)
- 4. Using language models
Representation of documents based on words

Based on word vectorsrepresenting sentence/document with vector canbedoneinastraightforwardwaywith:

→ Given sequence of word represented by x1, .., xn, define $f: \rightarrow R$

$$[x_1,.., x_n] \rightarrow f(x_1,..,x_n)$$

For instance:

$$[x_1,..,x_n] \rightarrow \frac{1}{n} \sum_i x_i$$

Given a Corpus made of novels of Shakespeare (Macbeth, Hamlet...), each document is a novel here:

- 1. Get the vocabulary of the Corpus
- 2. Compute the Count-Based Matrix at the document-level

Given a Corpus made of novels of Shakespeare (Macbeth, Hamlet...), each document is a novel here:

- 1. Get the vocabulary of the Corpus
- 2. Compute the Count-Based Matrix at the document-level

Build the term-frequency matrix

 $tf_{t,d} = |\{t \in d\}|$

Given a Corpus made of novels of Shakespeare (Macbeth, Hamlet...), each document is a novel here:

- 1. Get the vocabulary of the Corpus
- 2. Compute the Count-Based Matrix at the document-level

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

→ We get a vector representation for each document of the corpus

NB: such a model is called a *bag-of-word model* because the ordering of the words in each document does not matter

Limits: High sensitivity to frequent words OR to very infrequent words

How to improve?

- A word that is in all documents of the corpus (e.g. "the") is not informative at all for the document representation, still it impacts the document vector
- A word that is in only 1 document is likely to be very informative of the document

Solution:

- Weight the count with
- → Inverse Document Frequency

Weighting the importance of each term with the *document frequency*

Definition: Given N the total number of documents, a term t (token),

$$idf_{t,C} = log(\frac{|C|}{|\{d \in C, s.t. \ t \in d\}|})$$

NB: Compute the log to smooth the impact of words that are in only a few documents

TF-IDF Representation of Documents

Matrix becomes: tf*idf(t,d,C)

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

TF-IDF Representation of Documents

We can then apply dimension reduction technique to get dense vectors

→ E.g. we can apply SVD: Latent Semantic Analysis

Session Summary: Representing text with Vectors

- 1. Word as 1-hot vectors (// or indexes)
- 2. Hand-Crafted approach (e.g. Wordnet)

Word Vectors inferred with data using the distributional hypothesis:3. Word vectors with count-based approach

- 4. Prediction-Based Approach with the skip-gram model
- 5. Document Representation: bag of word models and the tf-idf

Bibliography and Acknowledgment

- Distributional Semantics, Evert 2015
- Foundations of Distributional Semantics, Evert & Lenci 2009
- Stanford Information-Retrieval Book
- ✤ Miller et. al 1985: WordNet
- Mikolov et. al 2013: Word2vec
- ✤ Grave & Joulin, ENSAE 2018-2019