Deep Learning Methods for NLP

Machine Learning for Natural Language Processing, ENSAE 2022

Lecture 3

Benjamin Muller, INRIA Paris

Lectures Outline

- 1. The Basics of Natural Language Processing (February 1st)
- 2. Representing Text with Vectors (February 1st)
- 3. Deep Learning Methods for NLP (February 8th)
- 4. Language Modeling (February 8th)
- 5. Sequence Labelling (Sequence Classification) (February 15th)
- 6. Sequence Generation Tasks (February 15th)

Today Lecture Outline

- Deep Learning Framework
- The Multi-Layer Perceptron
- Recurrent Neural Network
- Attention Mechanism
- Self-Attention Mechanism and the Transformer Architecture

Motivations

So far, we have seen, techniques to represent tokens with vectors

Given a certain representations of tokens:

→ How can we model a sequence of tokens to perform a specific task?

In the past 10 years, a "new" class of machine learning techniques has become very popular and successful in NLP: **Deep Learning**

In this session, we introduce Deep Learning with a focus on the methods used in NLP

Framework

We want to model $(X_1, ..., X_T)$ i.e. find the correct label Y

$$dnn_{\theta}: \qquad \mathbb{R}^{d,T} \rightarrow \mathbb{R}^{p} \text{ or } [|0,K|]^{p}$$
$$(X_{1},..,X_{T}) \mapsto \hat{Y}$$

- Output space is \mathbb{R}^p for **Regression** tasks
- Output space is $[|0, K|]^p$ for **Classification** tasks

Framework

We want to model $(X_1, ..., X_T)$ i.e. find the correct label Y

$$dnn_{\theta}: \qquad \mathbb{R}^{d,T} \to \mathbb{R}^p \text{ or } [|0,K|]^p$$
$$(X_1,..,X_T) \mapsto \hat{Y}$$

Questions: when we do Deep Learning...

- How do we define dnn_{θ} ?
- How do we train dnn_{θ} with data ?

Framework

Given a sequence of vectors $(X_1, ..., X_T)$ we want to predict Y

$$dnn_{\theta}: \qquad \mathbb{R}^{d,T} \rightarrow \mathbb{R}^{p} \text{ or } [[0,K]]^{p}$$
$$(X_{1},..,X_{T}) \mapsto \hat{Y}$$

Most Deep Learning Models (all the ones we will use in this course):

- are parametric (i.e. $\theta \in \mathbb{R}^D$)
- defined as a composition of "simple" functions (linear & non-linear)
- are trained in an end-to-end fashion with backpropagation

NB: In Deep Learning, the parametrization of *dnn* is called the Architecture

Different Types of Architecture

How can we define our predictive function dnn_{θ} ?

- → Multi-Layer Perceptron
- → Recurrent Layers
- → Attention Layers
- → Self-Attention Layers (in a Transformer Architecture)

Different Types of Architecture

How can we define our predictive function dnn_{θ} ?

- → Multi-Layer Perceptron
- → Recurrent Layers
- → Attention Layers
- → Self-Attention Layers (in a Transformer Architecture)

How do we train our model? (i.e. estimate the parameters of the model)

→ Stochastic Gradient Descent also called backpropagation in this context

aka "the Most simple Deep Learning Architecture"

The **MLP** works **on unidimensional data** (e.g. dimension *d*)

We present the **MLP in the regression case** (e.g. output space is \mathbb{R}^2))

aka "the Most simple Deep Learning Architecture"

The **MLP** works **on unidimensional data** (e.g. dimension *d*) We present the **MLP in the regression case** (e.g. output space is \mathbb{R}^2)

$$dnn_{(W_1,b_1,W_2,b_2)}(X) = W_2\varphi_1(W_1X + b_1) + b_2$$

 W_1, b_1, W_2 and b_2 are trainable parameters. $W_1 \in \mathbb{R}^{\delta \times d}, b_1 \in \mathbb{R}^{\delta}, W_2 \in \mathbb{R}^{2 \times \delta}$ and $b_2 \in \mathbb{R}$ φ_1 is a fixed non-linear function, $\varphi_1 : \mathbb{R}^d \to \mathbb{R}^{\delta}$

The **MLP** works **on unidimensional data** (e.g. dimension *d*) We present the **MLP in the regression case** (e.g. output space is

$$\mathbb{R}^2$$

$$dnn_{(W_1,b_1,W_2,b_2)}(X) = W_2\varphi_1(W_1X + b_1) + b_2$$

 W_1, b_1, W_2 and b_2 are trainable parameters. $W_1 \in \mathbb{R}^{\delta \times d}, b_1 \in \mathbb{R}^{\delta}, W_2 \in \mathbb{R}^{2 \times \delta}$ and $b_2 \in \mathbb{R}$ φ_1 is a fixed non-linear function, $\varphi_1 : \mathbb{R}^d \to \mathbb{R}^{\delta}$

→ This model is a **2-layer MLP** model

The **MLP** works **on unidimensional data** (e.g. dimension *d*) We present the **MLP in the regression case** (e.g. output space is

 \mathbb{R}^2

$$dnn_{(W_1,b_1,W_2,b_2)}(X) = W_2\varphi_1(W_1X + b_1) + b_2$$

 W_1, b_1, W_2 and b_2 are trainable parameters. $W_1 \in \mathbb{R}^{\delta \times d}, b_1 \in \mathbb{R}^{\delta}, W_2 \in \mathbb{R}^{2 \times \delta}$ and $b_2 \in \mathbb{R}$ φ_1 is a fixed non-linear function, $\varphi_1 : \mathbb{R}^d \to \mathbb{R}^{\delta}$

- → This model is a 2-layer MLP model
- → With 1 *hidden layer* of dimension δ

The **MLP** works **on unidimensional data** (e.g. dimension *d*) We present the **MLP in the regression case** (e.g. output space is

$$dnn_{(W_1,b_1,W_2,b_2)}(X) = W_2\varphi_1(W_1X + b_1) + b_2$$

 W_1, b_1, W_2 and b_2 are trainable parameters. $W_1 \in \mathbb{R}^{\delta \times d}, b_1 \in \mathbb{R}^{\delta}, W_2 \in \mathbb{R}^{2 \times \delta}$ and $b_2 \in \mathbb{R}$ φ_1 is a fixed non-linear function, $\varphi_1 : \mathbb{R}^d \to \mathbb{R}^{\delta}$

- → This model is a **2-layer MLP** model
- → With 1 *hidden layer* of dimension δ
- → Taking as input a vector of dimension d to output a vector of dimension 2

 \mathbb{R}^2

The **MLP** works **on unidimensional data** (e.g. dimension *d*) We present the **MLP in the regression case** (e.g. output space is

$$\mathbb{R}^2$$

$$dnn_{(W_1,b_1,W_2,b_2)}(X) = W_2\varphi_1(W_1X + b_1) + b_2$$

 W_1, b_1, W_2 and b_2 are trainable parameters. $W_1 \in \mathbb{R}^{\delta \times d}, b_1 \in \mathbb{R}^{\delta}, W_2 \in \mathbb{R}^{2 \times \delta}$ and $b_2 \in \mathbb{R}$ φ_1 is a fixed non-linear function, $\varphi_1 : \mathbb{R}^d \to \mathbb{R}^{\delta}$

- → This model is a **2-layer MLP** model
- → With 1 *hidden layer* of dimension δ
- → Taking as input a vector of dimension d to output a vector of dimension 2
- → Such a model is also referred to as a Feed-Forward Neural Network (FNN)

The MultiLayer Perceptron: Diagram View

Figure from (R. Rezvani et. al. 2012)

In Deep Learning, it is usual to represent equations with diagrams

The MultiLayer Perceptron: Diagram View

In Deep Learning, it is usual to represent equations with diagrams

The MultiLayer Perceptron:

We have defined a 2-layers MLP model We can define in the same way a **3-layers**, **4-layers**, **L-layers** MLP

 $dnn_{(W_i \ b_i, i \in [|1,L|])}(X) = W_L \varphi_{L-1}(\dots \varphi_2 \circ W_2 \varphi_1(W_1 X + b_1) + b_2)\dots) + b_L$

 W_l and b_l are trainable parameters. $W_l \in \mathbb{R}^{\delta_{l-1} \times \delta_l}$, $b_l \in \mathbb{R}^{\delta_l}$, with $\delta_l \in \mathbb{N}^*$, $\forall l \in [|1, L|]$ φ_l fixed non-linear functions, $\varphi_l : \mathbb{R}^{\delta_{l-1}} \to \mathbb{R}^{\delta_l}$, $\forall l \in [|1, L-1|]$

The MultiLayer Perceptron

The same equation with a loop...

$$h_{i+1} = \varphi_i(W_ih_i + b_i), \forall i \in [|1, L - 1|]$$

with $h_1 = X$ and $\hat{Y} = dnn(X) = h_L$

 W_l and b_l are trainable parameters. $W_l \in \mathbb{R}^{\delta_{l-1} \times \delta_l}$, $b_l \in \mathbb{R}^{\delta_l}$, with $\delta_l \in \mathbb{N}^*$, $\forall l \in [|1, L|]$

 $\varphi_l \text{ fixed non-linear functions, } \varphi_l : \mathbb{R}^{\delta_{l-1}} \to \mathbb{R}^{\delta_l}, \forall \, l \in [|1, L-1|]$

The MultiLayer Perceptron

The same equation with a loop...

$$h_{i+1} = \varphi_i(W_ih_i + b_i), \forall i \in [|1, L - 1|]$$

with $h_1 = X$ and $\hat{Y} = dnn(X) = h_L$

 W_l and b_l are trainable parameters. $W_l \in \mathbb{R}^{\delta_{l-1} \times \delta_l}$, $b_l \in \mathbb{R}^{\delta_l}$, with $\delta_l \in \mathbb{N}^*$, $\forall l \in [|1, L|]$

 $\varphi_l \text{ fixed non-linear functions, } \varphi_l : \mathbb{R}^{\delta_{l-1}} \to \mathbb{R}^{\delta_l}, \forall \, l \in [|1, L-1|]$

 h_i are called hidden states ($h_i \in \mathbb{R}^{\delta_i}$).

The MultiLayer Perceptron: Diagram View

Output Activation Function for Classification

When we do a classification task the goal is to learn a distribution of probability on the output label space

To do so, **we usually use the softmax function** as the last activation function

$$softmax(s) = \left(\frac{e^{s_i}}{\sum_k e^{s_k}}\right)_{i \in [|1,K|]}, \text{ for } s \in \mathbb{R}^K$$

Loss Functions

Based on the task we aim at modeling, we can use:

For Regression: Mean-Square Error

$$l(y, \hat{y}) = \|y - \hat{y}\|_2^2 = \sum_i (y_i - \hat{y}_i)^2 \text{ assuming } y_i, \ \hat{y}_i \in \mathbb{R}$$

For Classification: Cross-Entropy Loss

$$l(y,\hat{y}) = CE(y,\hat{y}) = \sum_{i} y_i \log(\hat{y}_i) \text{ assuming } y_i, \ \hat{y}_i \in [0,1]$$

Most NLP tasks will be based on the Cross-Entropy loss

- Number of hidden layers
- Hidden layers dimensions
- Initialization of the trainable parameters/weights

- Number of hidden layers
- Hidden layers dimensions
- Initialization of the trainable parameters/weights

- Number of hidden layers
- Hidden layers dimensions
- Initialization
- Activation Functions

- Number of hidden layers
- Hidden layers dimensions
- Initialization
- Activation Functions
- > They should be **non-linear**
- > Differentiable
- Standard ones are: Relu, tanh, sigmoid

- Number of hidden layers
- Hidden layers dimensions
- Initialization
- Activation Functions
- > They should be **non-linear**
- > Differentiable
- Standard ones are: Relu, tanh, sigmoid

- Number of hidden layers
- Hidden layers dimensions
- Initialization
- Activation Functions

How to define them?

- → Look for **best practices** to choose which are the best
- → In most DL libraries, the **"good" hyperparameters are usually the default**
- → If no best practices/default: you have to find the best ones empirically

Intuition

<u>playground</u>

Training Deep Learning Models

 Nearly all Deep Learning models are trained with (some version of) Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent

- The goal is find the set of **parameters/weights** that **minimizes the loss function**
- To do so, SGD estimates the true gradient of a function with **one** sample at time
- **Repeat** this process multiple times

NB: in deep learning, we usually train all the parameters together "end-to-end"

Algorithm 2 Stochastic Gradient Descend

```
Given observations ((x_i), (y_i)) of two variables (X, Y)
```

Given a loss function l. An architecture dnn_{θ}

The goal is to find the best θ s.t. $E(l(Y, dnn_{\theta}(X)))$ is small. Given a learning rate α

```
for step < max do

Sample (x, y)

# Forward pass:

\hat{y} = dnn_{\theta}(x) and l(y, \hat{y})

# Backward pass:

\nabla_{\theta} l(y, \hat{y}) # compute loss

\theta := \theta - \alpha \nabla_{\theta} l(y, \hat{y}) # parameter update

end
```

Algorithm 2 Stochastic Gradient Descend

Given observations $((x_i), (y_i))$ of two variables (X, Y)

Given a loss function l. An architecture dnn_{θ}

The goal is to find the best θ s.t. $E(l(Y, dnn_{\theta}(X)))$ is small. Given a learning rate α

```
for step < max do

Sample (x, y)

# Forward pass:

\hat{y} = dnn_{\theta}(x) and l(y, \hat{y})

# Backward pass:

\nabla_{\theta} l(y, \hat{y}) # compute loss

\theta := \theta - \alpha \nabla_{\theta} l(y, \hat{y}) # parameter update

end
```

Algorithm 2 Stochastic Gradient Descend

Given observations $((x_i), (y_i))$ of two variables (X, Y)

Given a loss function *l*. An architecture dnn_{θ}

The goal is to find the best θ s.t. $E(l(Y, dnn_{\theta}(X)))$ is small. Given a learning rate α

for step < max do Sample (x, y)# Forward pass: $\hat{y} = dnn_{\theta}(x)$ and $l(y, \hat{y})$ # Backward pass: $\nabla_{\theta} l(y, \hat{y})$ # compute loss $\theta := \theta - \alpha \nabla_{\theta} l(y, \hat{y})$ # parameter update end

Algorithm 2 Stochastic Gradient Descend

Given observations $((x_i), (y_i))$ of two variables (X, Y)

Given a loss function l. An architecture dnn_{θ}

The goal is to find the best θ s.t. $E(l(Y, dnn_{\theta}(X)))$ is small. Given a learning rate α

for step < max **do**

Sample (x, y)

Forward pass: $\hat{y} = dnn_{\theta}(x) \text{ and } l(y, \hat{y})$ # Backward pass: $\nabla_{\theta} l(y, \hat{y})$ # compute loss $\theta := \theta - \alpha \nabla_{\theta} l(y, \hat{y})$ # parameter update

end

Algorithm 2 Stochastic Gradient Descend Given observations $((x_i), (y_i))$ of two variables (X, Y)Given a loss function l. An architecture dnn_{θ} The goal is to find the best θ s.t. $E(l(Y, dnn_{\theta}(X)))$ is small. Given a learning rate α **for** *step* < max **do** Sample (x, y)# Forward pass: $\hat{y} = dnn_{\theta}(x)$ and $l(y, \hat{y})$ # Backward pass: $\nabla_{\theta} l(y, \hat{y})$ # compute gradients $\theta := \theta - \alpha \nabla_{\theta} l(y, \hat{y})$ # parameter update

end
Stochastic Gradient Descent

Optimization Hyperparameters

Learning Rate

- Can be refined with **variable learning rate** *E.g. increasing during the first steps (warmup) then decreasing* **Number of steps**
- Usually defined with based on the validation loss When it stops decreasing we can stop training (=early stopping)

Stochastic Gradient Descent

Optimizing large Deep Learning Models is challenging

- Unstable training
- Overfitting
- Take a lot of steps/epochs

To make training better, many refinement of the SGD have been proposed

 In practice, we (nowadays) use the ADAM optimizer (cf. Kingma et. al 2015)

Let
$$(X, Y) \in \mathbb{R}^d \times \mathbb{R}$$
, the MSE loss $l(y, \hat{y}) = (y - \hat{y})^2$.

We define a 1-hidden-layer MLP with a RELU activation function of dimension δ .

$$\hat{y} = dnn_{W_1,W_2}(x) = W_2 \max(W_1x, 0) \text{ and } W_1 \in \mathbb{R}^{d \times \delta} \text{ and } W_2 \in \mathbb{R}^{1 \times \delta}$$

Let
$$(X, Y) \in \mathbb{R}^d \times \mathbb{R}$$
, the MSE loss $l(y, \hat{y}) = (y - \hat{y})^2$.

We define a 1-hidden-layer MLP with a Relu activation function of dimension δ .

$$\hat{y} = dnn_{W_1,W_2}(x) = W_2 \max(W_1x,0) \text{ and } W_1 \in \mathbb{R}^{d \times \delta} \text{ and } W_2 \in \mathbb{R}^{1 \times \delta}$$

→ Goal: Apply SGD to *dnn*

Let
$$(X, Y) \in \mathbb{R}^d \times \mathbb{R}$$
, the MSE loss $l(y, \hat{y}) = (y - \hat{y})^2$.

We define a 1-hidden-layer MLP with a Relu activation function of dimension δ .

$$\hat{y} = dnn_{W_1,W_2}(x) = W_2 \max(W_1x, 0) \text{ and } W_1 \in \mathbb{R}^{d \times \delta} \text{ and } W_2 \in \mathbb{R}^{1 \times \delta}$$

1. Forward pass: Compute \hat{y}

Let
$$(X, Y) \in \mathbb{R}^d \times \mathbb{R}$$
, the MSE loss $l(y, \hat{y}) = (y - \hat{y})^2$.

We define a 1-hidden-layer MLP with a Relu activation function of dimension δ .

$$\hat{y} = dnn_{W_1, W_2}(x) = W_2 \max(W_1 x, 0) \text{ and } W_1 \in \mathbb{R}^{d \times \delta} \text{ and } W_2 \in \mathbb{R}^{1 \times \delta}$$

1. Forward pass $\nabla_{W_1} l(y, \hat{y})$ $\nabla_{W_2} l(y, \hat{y})$ 2. Compute Gradients $\nabla_{W_1} l(y, \hat{y})$ $\nabla_{W_2} l(y, \hat{y})$

Let
$$(X, Y) \in \mathbb{R}^d \times \mathbb{R}$$
, the MSE loss $l(y, \hat{y}) = (y - \hat{y})^2$.

We define a 1-hidden-layer MLP with a Relu activation function of dimension δ .

$$\hat{y} = dnn_{W_1, W_2}(x) = W_2 \max(W_1 x, 0) \text{ and } W_1 \in \mathbb{R}^{d \times \delta} \text{ and } W_2 \in \mathbb{R}^{1 \times \delta}$$

- 1. Forward pass
- 2. Compute Gradients
- 3. Backward pass (parameter update)

Let $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$, the MSE loss $l(y, \hat{y}) = (y - \hat{y})^2$.

$$\hat{y} = dnn_{W_1, W_2}(x) = W_2 \max(W_1 x, 0) \text{ and } W_1 \in \mathbb{R}^{d \times \delta} \text{ and } W_2 \in \mathbb{R}^{1 \times \delta}$$

Idea: we use **the chain rule** to decompose **the gradient** starting **from the top layers**

Let $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$, the MSE loss $l(y, \hat{y}) = (y - \hat{y})^2$.

$$\hat{y} = dnn_{W_1, W_2}(x) = W_2 \underbrace{\max(W_1 x, 0)}_{h_1} \text{ and } W_1 \in \mathbb{R}^{d \times \delta} \text{ and } W_2 \in \mathbb{R}^{1 \times \delta}$$

Compute Gradient

$$\nabla_{W_2} l(y, \hat{y}) = \frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial W_2}$$

Let $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$, the MSE loss $l(y, \hat{y}) = (y - \hat{y})^2$.

$$\hat{y} = dnn_{W_1, W_2}(x) = W_2 \underbrace{\max(W_1 x, 0)}_{h_1} \text{ and } W_1 \in \mathbb{R}^{d \times \delta} \text{ and } W_2 \in \mathbb{R}^{1 \times \delta}$$

Compute Gradient

$$\nabla_{W_2} l(y, \hat{y}) = \frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial W_2} = 2(y - \hat{y}) h_1$$

Let $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$, the MSE loss $l(y, \hat{y}) = (y - \hat{y})^2$.

$$\hat{y} = dnn_{W_1, W_2}(x) = W_2 \underbrace{\max(W_1 x, 0)}_{h_1} \text{ and } W_1 \in \mathbb{R}^{d \times \delta} \text{ and } W_2 \in \mathbb{R}^{1 \times \delta}$$

Compute Gradient:

$$\nabla_{W_2} l(y, \hat{y}) = \frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial W_2} = 2(y - \hat{y}) h_1$$
$$\nabla_{W_1} l(y, \hat{y}) = \frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial h_1} \frac{\partial h_1}{\partial W_2}$$

Let $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$, the MSE loss $l(y, \hat{y}) = (y - \hat{y})^2$.

$$\hat{y} = dnn_{W_1, W_2}(x) = W_2 \underbrace{\max(W_1 x, 0)}_{h_1} \text{ and } W_1 \in \mathbb{R}^{d \times \delta} \text{ and } W_2 \in \mathbb{R}^{1 \times \delta}$$

Compute Gradient:

$$\nabla_{W_2} l(y, \hat{y}) = \frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial W_2} = 2(y - \hat{y}) h_1$$
$$\nabla_{W_1} l(y, \hat{y}) = \frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial h_1} \frac{\partial h_1}{\partial W_2} = 2(y - \hat{y}) W_2 1_{W_1 X > 0}$$

Backpropagation and Deep Learning in practice

In practice, we use Deep Learning Libraries

- Define the Architecture with tensor operators
- Backpropagation is done **seamlessly using automatic differentiation**

Deep Learning & Backpropagation in practice

In practice, we use Deep Learning Libraries (e.g. pytorch, tensorflow, jax)

- Define the Architecture with tensor operators
- Backpropagation is done **seamlessly using automatic differentiation**

• Standard layers **are pre-implemented** (Feed-Forward Layers, LSTM, Attention, Self-Attention...)

See code example with pytorch

Recurrent Neural Network

Vanilla Recurrent Neural Network

We would like to model sequences (e.g. words) $(X_1, ..., X_T)$ in $\mathbb{R}^{d,T}$

We can introduce a recurrence relation into our MLP to model it:

$$h_{i+1,t+1} = \varphi_i(W_i h_{i,t} + U_i h_{i+1,t} + b_i), \forall i \in [|1, L-1|]$$

with $h_{1,t} = X_t$ and $\hat{Y}_t = dnn(X_t) = h_{L,t} \forall t \in [|1, T-1|]$

Recurrent Neural Network

Illustration of a 1-layer Recurrent Neural Network

Recurrent Neural Network

Illustration of a 1-layer Recurrent Neural Network

Training Recurrent Neural Network

Recurrent Neural Network are trained with an extension of the Backpropagation algorithm

→ Backpropagation Through Time (BPTT)

BPTT follows exactly the same ideas as backpropagation

- SGD
- Chain Rule starting from the last layer and the last hidden state
- With extra derivative dependencies between state *t* and *t*+1

Limits of Recurrent Neural Networks

Vanilla Recurrent Neural Network have trouble to capture long-term dependencies

Idea:

- Encode explicitly in a vector a "memory" in the recurrent architecture
- Control what is memorized and forgotten
- Train all those parameters **end-to-end**

Introduce a memory vector C_t

 C_t is designed to capture long term dependencies

The output state h_t of each LSTM cell is based on C_t and an output gate o_t

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left(C_t \right)$$

Introduce a memory vector C_t

 C_t is designed to capture long term dependencies

 C_t is define recurrently based on the previous step and the input and the forget gate. Those gates control what is memorized and forgotten.

$$C_{t} = f_{t} * C_{t-1} + i_{t} * \tilde{C}_{t} \qquad i_{t} = \sigma \left(W_{i} \cdot [h_{t-1}, x_{t}] + b_{i} \right)$$

$$\tilde{C}_{t} = \tanh(W_{C} \cdot [h_{t-1}, x_{t}] + b_{C})$$

- We train LSTM with Backpropagation (through time)
- LSTM cells are usually combined with Feed-Forward Layers

NB: Until recently (2018), LSTM-based models were delivering **State-of-the-art performance for most sequence modelling tasks**

Attention Mechanism

Motivation for Attention Mechanisms

- The Deep Learning Architecture that we have seen so far are hard to interpret (black-box)
- Recurrent Network provide a fixed vector encoding of a sequence at each step

→ Attention Mechanisms

We want to classify (X0, Xt) sequences (e.g. sentiment analysis)

Solution 1: Use a LSTM model \rightarrow Problem (not interpretable)

Feed to Softmax Layer for Classification

Attention Mechanism for Sequence Classification We want to classify (X0, Xt) sequences (e.g. sentiment)

Solution 2: Integrate an Attention Mechanism to interpret what input impacts the prediction

→ Learn a ponderation/weighting of the hidden states ht

We want to classify (X0, Xt) sequences (e.g. sentiment)

How to learn this weighting?

- 1. Define a specific type of layer to learn the ponderation
- 2. Train this layer end-to-end with all the other parameters of the model

We want to classify (X0, Xt) sequences (e.g. sentiment)

How to learn this weighting?

Given $(h_1, ..., h_T)$ hidden representations of $(x_1, ..., x_T)$ (e.g. output of a LSTM Layer).

$$q_i = tanh(W_ah_i + b_a), \text{ with } W_a \in \mathbb{R}^{\delta \times \delta_a}$$

$$s_t = \frac{e^{q_t q_T}}{\sum_j e^{q_j q_T}}$$
, i.e. $\sum_{t \in [|1,T|]} s_i = 1$

$$h_T = \sum_{t \in [|1,T|]} s_t h_t$$

We want to classify (X0, Xt) sequences (e.g. sentiment)

How to learn this weighting?

Given $(h_1, ..., h_T)$ hidden representations of $(x_1, ..., x_T)$ (e.g. output of a LSTM Layer).

$$q_i = tanh(W_ah_i + b_a), \text{ with } W_a \in \mathbb{R}^{\delta \times \delta_a}$$

$$s_t = \frac{e^{q_t q_T}}{\sum_j e^{q_j q_T}}, \text{ i.e. } \sum_{t \in [|1,T|]} s_i = 1$$

$$\tilde{h_T} = \sum_{t \in [|1,T|]} s_t . h_t$$

We want to classify (X0, Xt) sequences (e.g. sentiment)

How to learn this weighting?

Given $(h_1, ..., h_T)$ hidden representations of $(x_1, ..., x_T)$ (e.g. output of a LSTM Layer).

$$q_i = tanh(W_ah_i + b_a), \text{ with } W_a \in \mathbb{R}^{\delta \times \delta_a}$$

$$s_t = \frac{e^{q_t q_T}}{\sum_j e^{q_j q_T}}, \text{ i.e. } \sum_{t \in [|1,T|]} s_i = 1$$
$$\tilde{h_T} = \sum_{t \in [|1,T|]} s_t h_t$$

We want to classify (X0, Xt) sequences (e.g. sentiment classification)

After we trained the model, **Attention scores** can be used **to interpret the model** behavior and **what input vector impacted the decision**

Many variant of Attention Mechanisms (in combination with LSTM layers) have been designed

Design Choices

- How to define the *query vectors*?
- How to define the *scoring function*?

Many variants exists but the principles are the same.

The Transformer Architecture

Attention might be all we need

Do we really need recurrent layers?

RNN models (such as vanilla RNN, LSTM...) were designed to model sequential data

Still, for most tasks, we **need both left and right context (e.g. sequence classification, sequence labelling..)**

Why not modelling sequences in a bi-directional way directly
→ Using Self-Attention Mechanism

Self-Attention Layers

Given a sequence of input vectors $(x_1, ..., x_T) \in \mathbb{R}^{\delta}$ (noted $(h_{0,1}, ..., h_{0,T})$).

Objective:

• Build a representation of the input vectors based on the **surrounding vectors** (both right-and left-context)

Idea:

- No need of recurrent cells
- → Self-Attention
Given a sequence of input vectors $X = (x_1, ..., x_T) \in \mathbb{R}^{\delta}$ (noted $H = (h_{0,1}, ..., h_{0,T})$) We build 3 new vectorial representation of our sequence $H = (h_1, ..., h_T)$). The query $Q = (q_1, ..., q_T)$, the key $K = (k_1, ..., k_T)$ and the value $V = (v_1, ..., v_T)$ vectors.

- For a given vector h_t and its query vector q_t we want to build the new representation vector \tilde{h}_t
- Using the best ponderation of the information encoded in $(v_1, ..., v_T)$
- This ponderation being computed by finding the key vectors in $(k_1, ..., k_T)$ that are more similar to the query vector q_t (that encodes relevant information from h_t).

Given a sequence of input vectors $X = (x_1, ..., x_T) \in \mathbb{R}^{\delta}$ (noted $H = (h_{0,1}, ..., h_{0,T})$).

We build 3 new vectorial representation of our sequence $H = (h_1, ..., h_T)$).

The query $Q = (q_1, ..., q_T)$, the key $K = (k_1, ..., k_T)$ and the value $V = (v_1, ..., v_T)$ vectors.

- For a given vector h_t and its query vector q_t we want to build the new representation vector \tilde{h}_t
- Using the best ponderation of the information encoded in $(v_1, ..., v_T)$
- This ponderation being computed by finding the key vectors in $(k_1, ..., k_T)$ that are more similar to the query vector q_t (that encodes relevant information from h_t).

Given a sequence of input vectors $X = (x_1, ..., x_T) \in \mathbb{R}^{\delta}$ (noted $H = (h_{0,1}, ..., h_{0,T})$).

We build 3 new vectorial representation of our sequence $H = (h_1, ..., h_T)$. The query $Q = (q_1, ..., q_T)$, the key $K = (k_1, ..., k_T)$ and the value $V = (v_1, ..., v_T)$ vectors.

- For a given vector h_t and its query vector q_t we want to build the new representation vector \tilde{h}_t
- Using the best ponderation of the information encoded in $(v_1, ..., v_T)$
- This ponderation being computed by finding the key vectors in $(k_1, ..., k_T)$ that are more similar to the query vector q_t (that encodes relevant information from h_t).

Given a sequence of input vectors $X = (x_1, ..., x_T) \in \mathbb{R}^{\delta}$ (noted $H = (h_{0,1}, ..., h_{0,T})$). We build 3 new vectorial representation of our sequence $H = (h_1, ..., h_T)$). The query $Q = (q_1, ..., q_T)$, the key $K = (k_1, ..., k_T)$ and the value $V = (v_1, ..., v_T)$ vectors.

- For a given vector h_t and its query vector q_t we want to build the new representation vector \tilde{h}_t
- Using the best ponderation of the information encoded in $(v_1, ..., v_T)$
- This ponderation being computed by finding the key vectors in $(k_1, ..., k_T)$ that are more similar to the query vector q_t (that encodes relevant information from h_t).

Given a sequence of input vectors $X = (x_1, ..., x_T) \in \mathbb{R}^{\delta}$ (noted $H = (h_{0,1}, ..., h_{0,T})$).

We build 3 new vectorial representation of our sequence $H = (h_1, ..., h_T)$).

The query $Q = (q_1, ..., q_T)$, the key $K = (k_1, ..., k_T)$ and the value $V = (v_1, ..., v_T)$ vectors.

 $q_t = W_Q h_t\,$, $\forall\,t\in[|1,T|]$ with $W_Q\in\mathbf{R}^{\delta_q\times\delta}$

 $k_t = W_K h_t$, $\forall t \in [|1, T|]$ with $W_K \in \mathbf{R}^{\delta_k imes \delta}$

$$v_t = W_V h_t$$
 , $\forall t \in [|1, T|]$ with $W_V \in \mathbb{R}^{\delta_v imes \delta}$

Given a sequence of input vectors $X = (x_1, ..., x_T) \in \mathbb{R}^{\delta}$ (noted $H = (h_{0,1}, ..., h_{0,T})$).

We build 3 new vectorial representation of our sequence $H = (h_1, ..., h_T)$. The query $Q = (q_1, ..., q_T)$, the key $K = (k_1, ..., k_T)$ and the value $V = (v_1, ..., v_T)$ vectors.

$$q_t = W_Q h_t$$
, $\forall t \in [|1, T|]$ with $W_Q \in \mathbf{R}^{\delta_q \times \delta}$

 $k_t = W_K h_t$, $\forall t \in [|1, T|]$ with $W_K \in \mathbf{R}^{\delta_k imes \delta}$

 $v_t = W_V h_t\,$, $\forall\,t\in[|1,T|]$ with $W_V\in\mathbf{R}^{\delta_v\times\delta}$

Given a sequence of input vectors $X = (x_1, ..., x_T) \in \mathbb{R}^{\delta}$ (noted $H = (h_{0,1}, ..., h_{0,T})$).

We build 3 new vectorial representation of our sequence $H = (h_1, ..., h_T)$. The query $Q = (q_1, ..., q_T)$, the key $K = (k_1, ..., k_T)$ and the value $V = (v_1, ..., v_T)$ vectors.

$$q_t = W_Q h_t\,$$
 , $\forall\,t\in[|1,T|]$ with $W_Q\in \mathbf{R}^{\delta_q\times\delta}$

 $k_t = W_K h_t$, $\forall t \in [|1, T|]$ with $W_K \in \mathbb{R}^{\delta_k \times \delta}$

 $v_t = W_V h_t\,$, $\,\forall\,t\in [|1,T|]$ with $W_V\in \mathbf{R}^{\delta_v\times\delta}$

Given a sequence of input vectors $X = (x_1, ..., x_T) \in \mathbb{R}^{\delta}$ (noted $H = (h_{0,1}, ..., h_{0,T})$).

We build 3 new vectorial representation of our sequence $H = (h_1, ..., h_T)$).

The query $Q = (q_1, ..., q_T)$, the key $K = (k_1, ..., k_T)$ and the value $V = (v_1, ..., v_T)$ vectors.

$$\tilde{H} = softmax(\frac{Q K^T}{\sqrt{\delta_K}})V$$

i.e.
$$\tilde{h_t} = softmax(\frac{q_t K^T}{\sqrt{\delta_K}}).V = \sum_{t'} s_{t'} v_{t'}$$
 with $s_{t'} = \frac{e^{q_{t'}k_t}}{\sum_t e^{q_{t'}k_t}}$

Given a sequence of input vectors $X = (x_1, ..., x_T) \in \mathbb{R}^{\delta}$ (noted $H = (h_{0,1}, ..., h_{0,T})$).

We build 3 new vectorial representation of our sequence $H = (h_1, ..., h_T)$).

The query $Q = (q_1, ..., q_T)$, the key $K = (k_1, ..., k_T)$ and the value $V = (v_1, ..., v_T)$ vectors.

$$\tilde{H} = softmax(\frac{Q K^T}{\sqrt{\delta_K}})V$$

i.e.
$$\tilde{h_t} = softmax(\frac{q_t K^T}{\sqrt{\delta_K}}) V = \sum_{t'} s_{t'} v_{t'}$$
 with $s_{t'} = \frac{e^{q_{t'}k_t}}{\sum_t e^{q_{t'}k_t}}$

Given a sequence of input vectors $X = (x_1, ..., x_T) \in \mathbb{R}^{\delta}$ (noted $H = (h_{0,1}, ..., h_{0,T})$).

We build 3 new vectorial representation of our sequence $H = (h_1, ..., h_T)$. The query $Q = (q_1, ..., q_T)$, the key $K = (k_1, ..., k_T)$ and the value $V = (v_1, ..., v_T)$ vectors.

$$\tilde{H} = softmax(\frac{Q K^T}{\sqrt{\delta_K}})V$$

i.e.
$$\tilde{h_t} = softmax(\frac{q_t K^T}{\sqrt{\delta_K}}).V = \sum_{t'} s_{t'} v_{t'}$$
 with $s_{t'} = \frac{e^{q_{t'}k_t}}{\sum_t e^{q_{t'}k_t}}$

The Transformer Architecture

The Transformer Architecture is

- Stack of [Self-Attention + FF Layer]
- With Skip-Layer and Normalization
 Layers in between
- Encoding the position with positional vector

Positional Embedding Vector

- Limitation: self attention does not take position into account!
- Indeed, shuffling the input gives the same results
- Solution: add position encodings.
- Replace the matrix **W** by $\mathbf{W} + \mathbf{E}$, where $\mathbf{E} \in \mathbb{R}^{d \times T}$
- E can be learned, or defined using sin and cos:

$$e_{2i,j}=\sin\left(rac{j}{10000^{2i/d}}
ight)$$
 $e_{2i+1,j}=\cos\left(rac{j}{10000^{2i/d}}
ight)$

Scaling Laws Intuition

- The larger the dimension of the weight matrices
- The larger the number of parameters in the model
- The more "expressive" is the model
- The better it will generalizes

Typical Architecture Sizes

86

Lecture Summary

Deep Learning is a powerful and general modelling approach

- **Designing Architectures**, i.e. composition of linear transformation and non-linear transformation (possibly including recurrences)
- All those transformations **should be differentiable**
- All the parameters of the model are trained with backpropagation
- Toward a specific task s.t. regression or classification
- All the hyperparameters are chosen based on **best-practices** or empirical research