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Lectures Outline

1. The Basics of Natural Language Processing (February 1st)

2. Representing Text with Vectors (February 1st)

3. Deep Learning Methods for NLP (February 8th)

4. Language Modeling (February 8/15th)

5. Sequence Labelling (Sequence Classification) (February 15th)

6. Sequence Generation Tasks (February 15th)
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Outline

● Causal Language Model with LSTM

● Causal Language Model with Transformers 

● Evaluation 
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Framework

Given , our goal is to estimate: 

We saw how to estimate that with n-gram models

To do better: 
➔ Use a Deep-Learning Model
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Why Deep Learning Models for LM? 

Motivations

Theoretical Insights
● Deep Learning Models are universal approximators 
● Recurrent Neural Network can in theory model infinite context

Practical Insights
● They can be trained on very large amount of data
● They can use continuous representation of input tokens capturing the 

distributional hypothesis efficiently 
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Framework

Given , our goal is to estimate: 
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Framework

We want to find 
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Design Questions 

★ What tokenization ? 

★ What output activation function and loss? 

★ What architecture? 

★ How do you represent a token to feed the model? 
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Design Questions 

★ What tokenization ? 

★ What output activation function and loss? 

★ What architecture? 

★ How do you represent a token to feed the model? 

NB: Questions to ask for any NLP task approached with Deep Learning 
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● Word-Level Tokenization: e.g. “I, am, going”
Pros: Easy to segment, Words are Linguistic Units
Cons: Out-of-Vocabulary (OOV) problem

Tokenization
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● Word-Level Tokenization: e.g. “I, am, going”
Pros: Easy to segment, Words are Linguistic Units
Cons: Out-of-Vocabulary (OOV) problem

● Character-Level Tokenization: e.g. “I, ,a, ,m, ,g,o,i,n,g”
Pros: No OOV problem
Cons: Very long sequences

Tokenization
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Tokenization

● Word-Level Tokenization: e.g. “I, am, going”
Pros: Easy to segment, Words are Linguistic Units
Cons: Out-of-Vocabulary (OOV) problem

● Character-Level Tokenization: e.g. “I, ,a, ,m, ,g,o,i,n,g”
Pros: No OOV problem
Cons: Very long sequence

● SentencePiece Tokenization: “_I, _am, _go, ing”
Frequent “words“ become tokens and infrequent ones are split into subwords
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Tokenization

● Word-Level Tokenization: e.g. “I, am, going”
Pros: Easy to segment, Words are Linguistic Units
Cons: Out-of-Vocabulary (OOV) problem

● Character-Level Tokenization: e.g. “I, ,a, ,m, ,g,o,i,n,g”
Pros: No OOV problem
Cons: Very long sequence

● SentencePiece Tokenization: “_I, _am, _go, ing”
Frequent “words“ are kept intact and infrequent ones are split into subwords
NB: SentencePiece is the most popular tokenization algorithm for language models 13  
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Output Activation & Loss 

Softmax Function

Loss Function
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Output Activation & Loss 

Softmax Function

Loss Function

NB: We will use them in all the tasks we will cover in this course 15  



Language Modeling  - Machine Learning for NLP (4/6) - ENSAE Paris 2022  - Benjamin Muller 

Architecture

● The Multi-Layer Perceptron

● Recurrent Neural Network: LSTM Model

● The Transformer 
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MLP for Language Modeling

Recall: The MLP works on unidimensional data (e.g. dimension d)
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MLP for Language Modeling

Recall: The MLP works on unidimensional data (e.g. dimension d)

How can we model  with D arbitrary high ?  

18  



Language Modeling  - Machine Learning for NLP (4/6) - ENSAE Paris 2022  - Benjamin Muller 

MLP for Language Modeling

Recall: The MLP works on unidimensional data (e.g. dimension d)

How can we model  with D arbitrary high ?  

➔ Truncate input sequences: Fixed-Window Language Modeling
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How to represent input tokens? 

Solution 1

20  



Language Modeling  - Machine Learning for NLP (4/6) - ENSAE Paris 2022  - Benjamin Muller 

How to represent input tokens? 

Solution 1
1. 1-Hot Encoding
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How to represent input tokens? 

Solution 1: 1-Hot Encoding

1. We associate each token to a 1-hot vector of size D

movie    =    [1, 0, …,0, 0, 0]
hotel    =    [0, 1, …, 0, 0, 0]

…
art    =    [0, 0,..., 0, 0, 1]

2. Concatenate them to get a unidimensional vector
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1-Hot Encoding as inputs

➔ First hidden layer is of size |V|*K
➔ Taking as input a sparse vector 
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1-Hot Encoding as inputs

First hidden layer:
assuming tanh as the activation function,   dimension
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1-Hot Encoding as inputs

Limits
➔ The representation of each token is fixed and a 1-hot vector
➔ In this approach, we do not learn a representation of each input token
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How to represent input tokens? 

Solution 2: Integrate an Dense Embedding Layer 
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How to represent input tokens? 

Solution 2: Integrate an Dense Embedding Layer 
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How to represent input tokens? 

Solution 2: Integrate an Dense Embedding Layer 

➔ E is part of the parametrization of the model like any other layers
➔ We can train it during backprop end-to-end  

28  



Language Modeling  - Machine Learning for NLP (4/6) - ENSAE Paris 2022  - Benjamin Muller 

How to represent input tokens? 

Solution 2: Integrate an Dense Embedding Layer 

➔ E is part of the parametrization of the model like any other layers
➔ We can train it during backprop end-to-end  

See how to define it in torch 29  

https://colab.research.google.com/drive/1m7FzDczY5YEKKtucjbBbnCWyYnyH5ZRx?usp=sharing
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Dense Embedding Layer 

30  
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Dense Embedding Layer
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Dense Embedding Layer

➔ E is a dense embedding matrix
➔ We can learn a representation vector for each token in the vocabulary 

32  
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Trainable Dense Embedding layers are a “game changer“ for Deep 
Learning Models in NLP  i.e. Generalization is much better compared to 
1-hot encoding

Why? (intuition)

Why is an Embedding Layer much better? 
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Why is an Embedding Layer much better? 

Trainable Dense Embedding layers are a “game changer“ for Deep 
Learning Models in NLP  i.e. Generalization is much better compared to 
1-hot encoding

Why? (intuition)

1. Let’s assume that during training token the model has seen much less 
frequently cat  than dog
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Why is an Embedding Layer much better? 

Trainable Dense Embedding layers are a “game changer“ for Deep 
Learning Models in NLP  i.e. Generalization is much better compared to 
1-hot encoding

Why? (intuition)

1. Let’s assume that during training token the model has seen much less 
frequently cat  than dog

2. But “luckily” x and x’ have similar embedding vectors (i.e cos(x,x’) ~ 1)  
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Why is an Embedding Layer much better? 

Trainable Dense Embedding layers are a “game changer“ for Deep 
Learning Models in NLP  i.e. Generalization is much better compared to 
1-hot encoding

Why? (intuition)

1. Let’s assume that during training token the model has seen much less 
frequently cat  than dog

2. But “luckily” x and x’ have similar embedding vectors (i.e cos(x,x’) ~ 1)  
3. When the model dnn sees, at test time, cat it will be likely to model dog much 

better than in a 1-hot modeling case by using this similarity
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Why is an Embedding Layer much better? 

Trainable Dense Embedding layers are a “game changer“ for Deep 
Learning Models in NLP  i.e. Generalization is much better compared to 
1-hot encoding

Why? (Intuition)

1. Let’s assume that during training token the model has seen much less 
frequently cat  than dog

2. But “luckily” x and x’ have similar embedding vectors (i.e cos(x,x’) ~ 1)  
3. When the model dnn sees, at test time, cat it will be likely to model dog much 

better than in a 1-hot modeling case by using this similarity
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How to initialize an Embedding Layer? 

Similarly to all other parameters in a deep learning model 
● Before starting training: we can simply initialize the embedding matrix 

randomly 
● Before training, the similarity between embedding word vectors is 

random
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How to initialize an Embedding Layer? 

Similarly to all other parameters in a deep learning model 
● Before starting training: we can simply initialize the embedding matrix 

randomly 
● Before training, the similarity between embedding word vectors 

between random

Can we do better? 
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How to initialize an Embedding Layer? 

Similarly to all other parameters in a deep learning model 
● Before starting training: we can simply initialize the embedding matrix 

randomly 
● Before training, the similarity between embedding word vectors 

between random

Can we do better? 
➔ In lecture 2 we have seen how to represent good dense embedding 

vector with skip-gram word2vec model
➔ We can simply initialize our word embedding matrix with word2vec 

vectors
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How to initialize an Embedding Layer? 

Initializing with a pretrained embedding layer was also a gamechanger for 
many NLP tasks and many Deep Learning architecture

Conditions to use a pretrained embedding layer: 
➔ The token in our vocabulary must be in the training of the word2vec 

model 
➔ For the one that were not seen, we can simply initialize them randomly 
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Transfer Learning in NLP

Initializing with a pretrained embedding layer is also a game changer for 
many NLP tasks and many Deep Learning architecture

It is called Transfer Learning
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Embedding Layer Summary

● Trainable Dense Embedding Layer are a game changer for Deep 
Learning Models 

● Even more when we can use a pretrained embedding layers (e.g. with 
word2vec)

● They can be used with all Deep Learning Architectures 

● For all NLP tasks
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MLP for Fixed-Window Language Modeling
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MLP for Fixed-Window Language Modeling
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● Windows is Fixed

➔ Use Recurrent Neural Network (e.g. LSTM) 

Limits of MLP for language modeling
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Recall: 

Recurrent Neural Network for LM
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Recall:

For Language Modeling , like we did for the MLP
● We use an Embedding layer 
● We use the softmax layer as output

Recurrent Neural Network for LM
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Recurrent Neural Network for LM

49  

For an sequence of token 

We estimate      directly with the RNN
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Recurrent Neural Network for LM
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Written in a more synthetic way

We estimate      directly with the RNN
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Recurrent Neural Network for LM

51  

With a LSTM, we have a dependency on the Cell Vector: 

We estimate      directly with the LSTM
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Recurrent Neural Network for LM

52  source

https://medium.com/@florijan.stamenkovic_99541/rnn-language-modelling-with-pytorch-packed-batching-and-tied-weights-9d8952db35a9
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Transformer for Causal Language Modeling

53  

Inputs: Transformers requires a fixed sequence at input (we note it        )

Let’s assume we have a sequence 

We simply append it with a PADDING token 

We get a sequence of length          :

We make the model ignore those tokens by setting the softmax scores 
to 0 in the self-attention
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Input Embeddings:

Embedding:

such that

Transformer for Causal Language Modeling
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Given a sequence of tokens: 

Transformer for Causal Language Modeling
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Transformer for Causal Language Modeling

56  

Given a sequence of tokens: 

● Residual Connection and Layer Norm are not included in those equations
● FeedForward is position-wise two layer MLP (i.e. applied 

independently from the position of each hidden vector)
● Self-Attention is actually a Multi-Head Self-Attention
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The Transformer Architecture is 

● Stack of [Self-Attention + FF Layer]

● With Skip-Layer and Normalization 
Layers in between

● Encoding the position with positional 
vector

The Transformer Architecture
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Transformer for Causal Language Modeling

58  

Given a sequence of tokens: 

⇒ Last element of the sequence of the hidden states of the last layer fed 
to a softmax
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Training

59  

● We train  on large corpus of text (+1G of text)

● We train them with backpropagation

● We usually do “teacher-forcing”, for each step, we use the “gold” 
sequence” and not the predicted one 

● For Transformers, we train on sequences as long as possible 
(~1000 tokens) 

source

https://medium.com/@florijan.stamenkovic_99541/rnn-language-modelling-with-pytorch-packed-batching-and-tied-weights-9d8952db35a9
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Evaluation

60  

The lower the perplexity the better the language model

source

https://medium.com/@florijan.stamenkovic_99541/rnn-language-modelling-with-pytorch-packed-batching-and-tied-weights-9d8952db35a9
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Empirical Performance

Language Model Performance Comparison

➔ Transformer Models outperform LSTM-based models 
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Lecture Summary

● Causal Language Modeling Framework

● Representing input tokens for language modeling

● Recurrent Neural Network for Language Modeling

● Transformer for Language Modeling
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