Language Modeling

Machine Learning for Natural Language Processing, ENSAE 2022

Lecture 4

Benjamin Muller, INRIA Paris

Lectures Outline

- 1. The Basics of Natural Language Processing (February 1st)
- 2. Representing Text with Vectors (February 1st)
- 3. Deep Learning Methods for NLP (February 8th)
- 4. Language Modeling (February 8/15th)
- 5. Sequence Labelling (Sequence Classification) (February 15th)
- 6. Sequence Generation Tasks (February 15th)

Outline

- Causal Language Model with LSTM
- Causal Language Model with Transformers
- Evaluation

Framework

Given $(t_1, .., t_D) \in V^D$, our goal is to estimate: $P(t_{n+1}|t_1, .., t_n)$

We saw how to estimate that with n-gram models

To do better:

→ Use a Deep-Learning Model

Why Deep Learning Models for LM?

Motivations

Theoretical Insights

- Deep Learning Models are **universal approximators**
- Recurrent Neural Network can in theory model infinite context

Practical Insights

- They can be trained on very large amount of data
- They can use **continuous representation** of input tokens capturing the *distributional hypothesis* efficiently

Framework

Given $(t_1, ..., t_D) \in V^D$, our goal is to estimate:

$$p(t_{n+1}|t_1,..,t_n)$$

Framework

We want to find dnn_{θ}

$$dnn_{\theta}: \qquad V^{D} \rightarrow [0,1]^{V}$$

$$(t_{1},..,t_{D}) \mapsto \hat{p}$$
s.t. $\hat{p} = (p_{i})_{i \in [|0,V-1|]}, \forall i \ p_{i} \in [0,1] \text{ and } \sum_{i} p_{i} = 1$

Design Questions

- ★ What tokenization ?
- ★ What output activation function and loss?
- ★ What architecture?
- ★ How do you represent a token to feed the model?

Design Questions

- ★ What tokenization ?
- ★ What output activation function and loss?
- ★ What architecture?
- ★ How do you represent a token to feed the model?

NB: Questions to ask for any NLP task approached with Deep Learning

• Word-Level Tokenization: e.g. "I, am, going" Pros: Easy to segment, Words are Linguistic Units Cons: Out-of-Vocabulary (OOV) problem

• Word-Level Tokenization: e.g. "I, am, going" Pros: Easy to segment, Words are Linguistic Units Cons: Out-of-Vocabulary (OOV) problem

• Character-Level Tokenization: e.g. "I, ,a, ,m, ,g,o,i,n,g" Pros: No OOV problem Cons: Very long sequences

• Word-Level Tokenization: e.g. "I, am, going" Pros: Easy to segment, Words are Linguistic Units Cons: Out-of-Vocabulary (OOV) problem

• Character-Level Tokenization: e.g. "I, ,a, ,m, ,g,o,i,n,g" Pros: No OOV problem Cons: Very long sequence

• SentencePiece Tokenization: "_I, _am, _go, ing"

Frequent "words" become tokens and infrequent ones are split into subwords

• Word-Level Tokenization: e.g. "I, am, going" Pros: Easy to segment, Words are Linguistic Units Cons: Out-of-Vocabulary (OOV) problem

• Character-Level Tokenization: e.g. "I, ,a, ,m, ,g,o,i,n,g" Pros: No OOV problem Cons: Very long sequence

• SentencePiece Tokenization: "_I, _am, _go, ing"

Frequent "words" are kept intact and infrequent ones are split into subwords NB: SentencePiece is the most popular tokenization algorithm for language models

Output Activation & Loss

Softmax Function

$$softmax(s) = \left(\frac{e^{s_i}}{\sum_k e^{s_k}}\right)_{i \in [|1, V|]}, \text{ for } s \in \mathbb{R}^{|V|}$$

Loss Function

$$l(p, \hat{p}) = CE(p, \hat{p}) = \sum_{i \in [|0, V-1|]} p_i \log(\hat{p_i})$$

Output Activation & Loss

Softmax Function

$$softmax(s) = (\frac{e^{s_i}}{\sum_k e^{s_k}})_{i \in [|1,K|]}, \text{ for } s \in \mathbb{R}^K$$

Loss Function

$$l(p, \hat{p}) = CE(p, \hat{p}) = \sum_{i \in [|0, V-1|]} p_i \log(\hat{p}_i)$$

NB: We will use them in all the tasks we will cover in this course

Architecture

- The Multi-Layer Perceptron
- Recurrent Neural Network: LSTM Model
- The Transformer

MLP for Language Modeling

Recall: The **MLP** works **on unidimensional data** (e.g. dimension *d*)

MLP for Language Modeling

Recall: The **MLP** works **on unidimensional data** (e.g. dimension *d*)

$$dnn_{\theta}: \qquad \mathbb{R}^d \quad \to [0,1]^V$$
$$X \mapsto \hat{Y}$$

How can we model $(t_1, .., t_D) \in V^D$ with *D* arbitrary high?

MLP for Language Modeling

Recall: The **MLP** works **on unidimensional data** (e.g. dimension *d*)

$$dnn_{\theta}: \qquad \mathbb{R}^d \quad \to [0,1]^V$$
$$X \mapsto \hat{Y}$$

How can we model $(t_1, .., t_D) \in V^D$ with *D* arbitrary high?

→ Truncate input sequences: Fixed-Window Language Modeling

Solution 1

Solution 1

1. 1-Hot Encoding

Solution 1: 1-Hot Encoding

1. We associate each token to a **1-hot vector of size D**

2. Concatenate them to get a unidimensional vector

1-Hot Encoding as inputs

$$dnn_{\theta}: \qquad \{0,1\}^{|V|*K} \rightarrow [0,1]^{V}$$
$$x = ([x_1,..,x_K]) \mapsto \hat{p}$$

- → First hidden layer is of size /V/*K
- → Taking as input a sparse vector

1-Hot Encoding as inputs

$$dnn_{\theta}: \qquad \{0,1\}^{|V|*K} \rightarrow [0,1]^{V}$$
$$x = ([x_1,..,x_K]) \mapsto \hat{p}$$

First hidden layer:

assuming tanh as the activation function, dimension $\,\delta\,$

$$h_1 = tanh(W.x)$$
 s.t. $W \in \mathbb{R}^{\delta \times (|V| * K))}$

1-Hot Encoding as inputs

$$dnn_{\theta}: \qquad \{0,1\}^{|V|*K} \rightarrow [0,1]^{V}$$
$$x = ([x_1,..,x_K]) \mapsto \hat{p}$$

Limits

- → The representation of each token is fixed and a 1-hot vector
- → In this approach, we do not learn a representation of each input token

Solution 2: Integrate an Dense Embedding Layer

Solution 2: Integrate an Dense Embedding Layer

We define a dense embedding layer $E \in \mathbb{R}^{\delta_e \times |V|}$.

This means that for each token $t \in V$ indexed by j in the vocabulary $V = \{t_1, ..., t_{|V|}\}$) we have t_j embedded by the vector E_{j} (i.e. column of the matrix E indexed by j) of dimension δ_e (the dimension of the embedding vectors).

Solution 2: Integrate an Dense Embedding Layer

We define a dense embedding layer $E \in \mathbb{R}^{\delta_e \times |V|}$.

This means that for each token $t \in V$ indexed by j in the vocabulary $V = \{t_1, ..., t_{|V|}\}$) we have t_j embedded by the vector E_{j} (i.e. column of the matrix E indexed by j) of dimension δ_e (the dimension of the embedding vectors).

→ E is part of the parametrization of the model like any other layers
→ We can train it during backprop end-to-end

Solution 2: Integrate an Dense Embedding Layer

We define a dense embedding layer $E \in \mathbb{R}^{\delta_e \times |V|}$.

This means that for each token $t \in V$ indexed by j in the vocabulary $V = \{t_1, ..., t_{|V|}\}$) we have t_j embedded by the vector E_{j} (i.e. column of the matrix E indexed by j) of dimension δ_e (the dimension of the embedding vectors).

→ E is part of the parametrization of the model like any other layers
→ We can train it during backprop end-to-end

See how to define it in torch

Dense Embedding Layer

s.t. $x_i = E_{j} \in \mathbb{R}^{\delta_e}$ with token t_i indexed by j in V

Dense Embedding Layer

$$dnn_{\theta}: \qquad \mathbb{R}^{|\kappa|*\delta_{e}} \rightarrow [0,1]^{V}$$
$$x = ([x_{1},..,x_{K}]) \mapsto \hat{p}$$
s.t. $x_{i} = E_{.j} \in \mathbb{R}^{\delta_{e}}$ with token t_{i} indexed by j in V

Dense Embedding Layer

$$dnn_{\theta}: \qquad \mathbb{R}^{|\kappa|*\delta_{e}} \rightarrow [0,1]^{V}$$
$$x = ([x_{1},..,x_{K}]) \mapsto \hat{p}$$
s.t. $x_{i} = E_{.j} \in \mathbb{R}^{\delta_{e}}$ with token t_{i} indexed by j in V

 \rightarrow *E* is a dense embedding matrix

→ We can learn a representation vector for each token in the vocabulary

Trainable Dense Embedding layers are a "game changer" for Deep Learning Models in NLP i.e. Generalization is much better compared to 1-hot

Why? *t* and *t'* that have the embedding vectors (in *E*) *x* and *x'*. e.g. t = "dog" and t' = "cat"

Trainable Dense Embedding layers are a "game changer" for Deep Learning Models in NLP i.e. Generalization is much better compared to 1-hot

Why? (intuition)

t and t' that have the embedding vectors (in E) x and x'. e.g. t = "dog" and t' = "cat"

1. Let's assume that during training token the model has seen much less frequently *cat* than *dog*

Trainable Dense Embedding layers are a "game changer" for Deep Learning Models in NLP i.e. Generalization is much better compared to 1-hot

Why? (intuition)

t and t' that have the embedding vectors (in E) x and x'. e.g. t = "dog" and t' = "cat"

- 1. Let's assume that during training token the model has seen much less frequently *cat* than *dog*
- 2. But "luckily" **x** and **x**' have similar embedding vectors (i.e $cos(x,x') \sim 1$)

Trainable Dense Embedding layers are a "game changer" for Deep Learning Models in NLP i.e. Generalization is much better compared to 1-hot

Why? (intuition)

t and t' that have the embedding vectors (in E) x and x'. e.g. t = "dog" and t' = "cat"

- 1. Let's assume that during training token the model has seen much less frequently *cat* than *dog*
- 2. But "luckily" **x** and **x'** have similar embedding vectors (i.e $cos(x, x') \sim 1$)
- 3. When the model *dnn* sees, at test time, *cat* it will be likely to model *dog* much better than in a 1-hot modeling case by using this similarity

Trainable Dense Embedding layers are a "game changer" for Deep Learning Models in NLP i.e. Generalization is much better compared to 1-hot

Why? (Intuition)

t and t' that have the embedding vectors (in E) x and x'. e.g. t = "dog" and t' = "cat"

- 1. Let's assume that during training token the model has seen much less frequently *cat* than *dog*
- 2. But "luckily" **x** and **x**' have similar embedding vectors (i.e $cos(x,x') \sim 1$)
- 3. When the model *dnn* sees, at test time, *cat* it will be likely to model *dog* much better than in a 1-hot modeling case by using this similarity

Similarly to all other parameters in a deep learning model

- Before starting training: we can simply initialize the embedding matrix randomly
- Before training, the similarity between embedding word vectors is random

Similarly to all other parameters in a deep learning model

- Before starting training: we can simply initialize the embedding matrix randomly
- Before training, the similarity between embedding word vectors between random

Can we do better?

Similarly to all other parameters in a deep learning model

- Before starting training: we can simply initialize the embedding matrix randomly
- Before training, the similarity between embedding word vectors between random

Can we do better?

- → In lecture 2 we have seen how to represent good dense embedding vector with skip-gram word2vec model
- → We can simply initialize our word embedding matrix with word2vec vectors

Initializing with a **pretrained embedding** layer was also a **gamechanger** for many NLP tasks and many Deep Learning architecture

Conditions to use a pretrained embedding layer:

- → The token in our vocabulary must be in the training of the word2vec model
- → For the one that were not seen, we can simply initialize them randomly

Transfer Learning in NLP

Initializing with a **pretrained embedding** layer is also a **game changer** for many NLP tasks and many Deep Learning architecture

It is called Transfer Learning

Embedding Layer Summary

- Trainable Dense Embedding Layer are a *game changer* for Deep Learning Models
- Even more when we can use a pretrained embedding layers (e.g. with word2vec)
- They can be used with all Deep Learning Architectures
- For all NLP tasks

MLP for Fixed-Window Language Modeling

$$\hat{t}_{n+1} = \operatorname{argmax}_{t \in V} p(t|t_1, ..., t_n)$$

$$dnn_{\theta}: \qquad \mathbb{R}^{|V|*\delta_{e}} \rightarrow [0,1]^{V}$$
$$x = ([x_{1},..,x_{K}]) \mapsto \hat{p}$$

MLP for Fixed-Window Language Modeling

Limits of MLP for language modeling

- Windows is Fixed
- → Use Recurrent Neural Network (e.g. LSTM)

Recall:

$$h_{i+1,t+1} = \varphi_i(W_i h_{i,t} + U_i h_{i+1,t} + b_i), \forall i \in [|1, L-1|]$$

with $h_{1,t} = X_t$ and $\hat{Y}_t = dnn(X_t) = h_{L,t} \,\forall t \in [|1, T-1|]$

Recall:

$$h_{i+1,t+1} = \varphi_i(W_i h_{i,t} + U_i h_{i+1,t} + b_i), \forall i \in [|1, L-1|]$$

with $h_{1,t} = X_t$ and $\hat{Y}_t = dnn(X_t) = h_{L,t} \,\forall t \in [|1, T-1|]$

For Language Modeling , like we did for the MLP

- We use an Embedding layer
- We use the softmax layer as output

For an sequence of token

$$\begin{split} h_{i+1,t+1} &= \varphi_i(W_ih_{i,t} + U_ih_{i+1,t} + b_i), \forall i \in [|1,L|] \ \forall t \in [|1,T|] \\ \text{with } h_{1,t} &= Emb(x_t) \ \text{and} \ p_{t+1}^{\widehat{}} = h_{L+1,t+1} \\ \text{with} \ \varphi_L &= softmax \end{split}$$

We estimate
$$\hat{p_{t+1}} = p(x_{t+1}|x_1, ...x_t)$$
 directly with the RNN

Written in a more synthetic way

$$\begin{aligned} h_{i+1,t+1} &= RNN_i(h_{i,t}, h_{i+1,t}), \forall i \in [|1, L|] \ \forall t \in [|1, T|] \\ \text{with } h_{1,t} &= Emb(x_t) \ \text{and} \ p_{t+1}^{\widehat{}} &= h_{L+1,t+1} \\ \text{with} \ \varphi_L &= softmax \end{aligned}$$

We estimate
$$\hat{p_{t+1}} = p(x_{t+1}|x_1,..x_t)$$
 directly with the RNN

With a LSTM, we have a dependency on the Cell Vector:

$$\begin{aligned} h_{i+1,t+1}, C_{i+1,t+1} &= LSTM_i(h_{i,t}, h_{i+1,t}, C_{i+1,t}), \forall i \in [|1, L|] \ \forall t \in [|1, T|] \\ \text{with } h_{1,t} &= Emb(x_t) \ \text{and} \ p_{t+1}^{-} &= h_{L+1,t+1} \\ \text{with} \ \varphi_L &= softmax \end{aligned}$$

We estimate
$$\hat{p_{t+1}} = p(x_{t+1}|x_1, ..x_t)$$
 directly with the LSTM

Inputs: Transformers requires a fixed sequence at input (we note it \mathcal{T})

Let's assume we have a sequence $(x_1,...x_T)$

We simply append it with a **PADDING** token

We append $(x_{T+1}, ..., x_{\mathcal{T}})$ with $x_t = [PAD] \forall t \ge T+1$

We get a sequence of length $\mathcal{T}: (x_1, ... x_{\mathcal{T}})$

We make the model ignore those tokens by setting the softmax scores to 0 in the self-attention

Input

$$(x_1, \dots x_{\mathcal{T}})$$

Embedding:

 $(Emb(x_1), \dots Emb(x_{\mathcal{T}}))$

such that $Emb(x_i) = PositionEmb(x_i) + TokenEmb(x_i)$

Given a sequence of tokens:

$$(x_1, ..., x_T)$$

$$\begin{aligned} \mathbf{H}_{i+1} &= FeedForward(A_{i+1}) \text{ and } A_{i+1} = SelfAttention(H_i) \quad \forall i \in [|1, L|] \\ \text{with} \quad SelfAttention(\mathbf{H}_i) = softmax(\frac{Q K^T}{\sqrt{\delta_K}})V \\ \mathbf{H}_0 &= (Emb(x_1), ... Emb(x_T)) \end{aligned}$$

Given a sequence of tokens:

$$(x_1, ..., x_T)$$

$$\begin{aligned} \mathsf{H}_{i+1} &= FeedForward(A_{i+1}) \text{ and } A_{i+1} = SelfAttention(H_i) \quad \forall i \in [|1, L|] \\ \text{with} \quad SelfAttention(\mathsf{H}_i) = softmax(\frac{Q K^T}{\sqrt{\delta_K}})V \\ \mathbf{H}_0 &= (Emb(x_1), ... Emb(x_T)) \end{aligned}$$

- Residual Connection and Layer Norm are not included in those equations
- FeedForward is position-wise two layer MLP (i.e. applied independently from the position of each hidden vector)
- Self-Attention is actually a Multi-Head Self-Attention

The Transformer Architecture

The Transformer Architecture is

- Stack of [Self-Attention + FF Layer]
- With Skip-Layer and Normalization
 Layers in between
- Encoding the position with positional vector

Given a sequence of tokens:

$$(x_1, ..., x_T)$$

⇒ Last element of the sequence of the hidden states of the last layer fed to a softmax

$$\hat{p_{x_{T+1}}} = softmax(h_T) \quad \forall t \leq T$$

Training

- We train on large corpus of text (+1G of text)
- We train them with backpropagation
- We usually do "teacher-forcing", for each step, we use the "gold" sequence" and not the predicted one
- For Transformers, we train on sequences as long as possible (~1000 tokens)

Evaluation

$$perplexity(\hat{x}, x) = 2^{-\sum_{i} x_i log(\hat{x}_i)}$$

The lower the perplexity the better the language model

Empirical Performance

Language Model Performance Comparison

→ Transformer Models outperform LSTM-based models

Lecture Summary

- Causal Language Modeling Framework
- Representing input tokens for language modeling
- Recurrent Neural Network for Language Modeling
- Transformer for Language Modeling