Sequence Labelling & Classification

Machine Learning for Natural Language Processing, ENSAE 2022

Lecture 5

Benjamin Muller, INRIA Paris

Lectures Outline

- 1. The Basics of Natural Language Processing (February 1st)
- 2. Representing Text with Vectors (February 1st)
- 3. Deep Learning Methods for NLP (February 8th)
- 4. Language Modeling (February 8th)
- 5. Sequence Labelling (Sequence Classification) (February 15th)
- 6. Sequence Generation Tasks (February 15th)

Framework & Outline

We assume an input sequence of tokens $(x_1, ..., x_T) \in V^T$.

We want classify each element in the sequence with the label $(y_1, ..., y_T) \in [|1, L|]^T$.

Our goal is to estimate (Sequence Labeling)

$$p_{\theta}(y_1, ..., y_T | x_1, ..., x_T)$$

Framework & Outline

We assume an input sequence of tokens $(x_1, ..., x_T) \in V^T$.

We want classify each element in the sequence with the label $(y_1, ..., y_T) \in [|1, L|]^T$.

Our goal is to estimate (Sequence Labeling)

$$p_{\theta}(y_1, ..., y_T | x_1, ..., x_T)$$

For sequence classification, we simply consider y_T only

Framework & Outline

We assume an input sequence of tokens $(x_1, ..., x_T) \in V^T$.

We want classify each element in the sequence with the label $(y_1, ..., y_T) \in [|1, L|]^T$.

Our goal is to estimate

$$p_{\theta}(y_1, ..., y_T | x_1, ..., x_T)$$

Outline

- 1. NLP tasks
- 2. How to model them with Deep Learning?

Sequence Labeling & Classification Examples

- Part-of-Speech Tagging
- Named Entity Recognition
- The GLUE/SuperGlue Benchmark: Boolean QA
- Hate Speech Detection

POS Tagging

- Input: Sequence of words (i.e. word-level tokenization is assumed)
- Output: For each word, predict the grammatical category

Why doing POS tagging?

- Linguistic Analysis of a given corpus of text (Sociolinguistics, Historical Linguistics...)
- Language Acquisition Application
- Measuring the ability of a given NLP technique

What POS Tagset?

Defining all the possible grammatical category of a word depends on

- 1. What **language** you are working with?
- 2. A given theory of syntax

What POS Tagset?

Defining all the possible grammatical category of a word depends on

- 1. What **language** you are working with?
- 2. A given theory of syntax

Consequences:

→ There is **no truly universal tagset** that would work in every cases

Still

• There is a *Universal Dependency Corpora* which attempts to do so

Universal Dependency Project (UD)

- Universal Dependencies (UD) is a framework for consistent annotation of grammar: parts of speech, morphological features, and syntactic dependencies
- Across
 100
 human
 languages
- That produced so far about 200 Treebanks

Universal Dependency Project (UD)

- Universal Dependencies (UD) is a framework for consistent annotation of grammar: parts of speech, morphological features, and syntactic dependencies
- Across 100 human languages
- That produced so far about 200 Treebanks

PRP Case=Nom|Number=Plur 2 nsubj_ 1 They they PRON 2 buy VERB VBP Number=Plur|Person=3|Tense=Pres 0 root _ buy 3 and and CONJ CC 2 cc _ _ Number=Plur|Person=3|Tense=Pres 2 4 sell sell VERB VBP conj _ 5 books book NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 6 . . PUNCT . _ 2 punct _ _

Universal Dependency Project: Tagset

17 POS Categories

Example:

Не	PRON				
owns	VERB				
а	DET				
house	NOUN				
in	ADP				
Paris	PROPN				

- ADJ: adjective
- <u>ADP</u>: adposition
- <u>ADV</u>: adverb
- AUX : auxiliary
- <u>CCONJ</u>: coordinating conjunction
- **DET**: determiner
- INTJ: interjection
- NOUN: noun
- <u>NUM</u>: numeral
- PART: particle
- <u>PRON</u>: pronoun
- <u>PROPN</u>: proper noun
- <u>PUNCT</u>: punctuation
- <u>SCONJ</u>: subordinating conjunction
- <u>SYM</u>: symbol
- <u>VERB</u>: verb
- <u>x</u>: other

Universal Dependency Project: Tagset

Open class words	Closed class words	Other
ADJ	ADP	PUNCT
ADV	AUX	SYM
INTJ	CCONJ	x
NOUN	DET	
PROPN	NUM	
VERB	PART	
	PRON	
	SCONJ	

POS Tagging Evaluation

Accuracy of POS prediction over a test set of size N words:

$$Accuracy = \frac{\#\{y_i = \hat{y}_i\}}{N}$$

POS Tagging Evaluation

Accuracy of POS prediction over a test set of size N words:

$$Accuracy = \frac{\#\{y_i = \hat{y}_i\}}{N}$$

NB: This accuracy assumes "gold" word-level tokenization

Is POS a hard task?

• For *high-resource languages* we are near 99% accuracy e.g. Camembert reached +98% accuracy on French

For *low-resource languages*: it is much harder ~50% for Kurmanji (Kurdish language)

NER

Def: NER consists in identifying the Name Entities in a sentence.

For instance, we may want to identify: PERSONS, LOCATION and ORGANISATION

United Nations official heads for Baghdad → [ORG United Nations] official [PER Ekeus] heads for [LOC Baghdad]

We frame this task as a word-level sequence labelling task

NER

To do so, we can use a BIO approach (Beginning-Inside-Outside)

r	
United	B-ORG
Nations	I-ORG
official	0
Ekeus	I-PER
heads	0
for	0
Baghdad	I-LOC

NER Evaluation

$$F1 = hmean(precision, recall) = \frac{2}{\frac{1}{precision} + \frac{1}{recall}}$$

Precision: % of named entities that are correct out of the total number of predicted entities by the system

Recall: % of named entities that are correct out of the total number of name entities in the dataset

GLUE / SUPERGLUE Benchmarks

The General Language Understanding Evaluation (GLUE) benchmark is a collection of resources for training, evaluating, and analyzing natural language understanding systems. GLUE consists of 9 tasks

Example: Bool QA predict YES/NO Given a question and a passageWe can frame it as a sequence classification task afterconcatenatingthequestionandthepassage

<u>Sample</u>

Question: "is france the same timezone as the uk", Passage: "At the Liberation of France in the summer of 1944, Metropolitan France kept GMT+2 as it was the time then used by the Allies (British Double Summer Time). In the winter of 1944--1945, Metropolitan France switched to GMT+1, same as in the United Kingdom, and switched again to GMT+2 in April 1945.... Answer : false Sequence Labeling & Classification - Machine Learning for NLP (5/6) - ENSAE Paris 2022 - Benjamin Muller

Modeling for Sequence Labeling

Modeling

- Sequence Labeling with LSTM-based model
- Sequence Labeling with a Transformer model

RNN for Sequence Labeling

We assume an input sequence of tokens $(x_1, .., x_T) \in V^T$.

We want classify each element in the sequence with the label $(y_1, ..., y_T) \in [|1, L|]^T$.

$$\begin{aligned} h_{i+1,t+1} &= RNN_i(h_{i,t}, h_{i+1,t}), \forall i \in [|1, L|] \ \forall t \in [|1, T|] \\ \text{with } h_{1,t} &= Emb(x_t) \ \text{and} \ p_{t+1}^{\, \cdot} = h_{L+1,t+1} \\ \text{with} \ \varphi_L &= softmax \end{aligned}$$

- So far, very close to language modeling
- The main difference is that we classify in a set of length L

RNN for Sequence Labeling

Limit: We model the sequence only unidirectionally

In ambiguous cases, we need the entire sequence to predict the correct label:

Example: st-gervais ski resort is an amazing place for skiing

Impossible for a model to predict that *st-gervais ski resort* is a location without the right context

How to build a Bi-Directional DL Model?

Solution 1:

→ Combine two RNNs, one for each direction (e.g. BI-LSTM)

Solution 2: → Use a Transformer Model

Inputs: Transformers requires a fixed sequence at input (we note it \mathcal{T})

Let's assume we have a sequence $(x_1,...x_T)$

We simply append it with a **PADDING** token

We append $(x_{T+1}, ..., x_{\mathcal{T}})$ with $x_t = [PAD] \forall t \ge T+1$

We get a sequence of length \mathcal{T} : $(x_1, ... x_{\mathcal{T}})$

We make the model ignore those tokens by setting the softmax scores to 0 in the self-attention

Input

Embeddings:

$$(x_1, \dots x_{\mathcal{T}})$$

Embedding:

 $(Emb(x_1), \dots Emb(x_{\mathcal{T}}))$

such that $Emb(x_i) = PositionEmb(x_i) + TokenEmb(x_i)$

Given a sequence of tokens: (x_1)

$$(x_1, ..., x_T)$$

$$\begin{aligned} \mathbf{H}_{i+1} &= FeedForward(A_{i+1}) \text{ and } A_{i+1} = SelfAttention(H_i) \quad \forall i \in [|1, L|] \\ \text{with} \quad SelfAttention(\mathbf{H}_i) = softmax(\frac{Q K^T}{\sqrt{\delta_K}})V \\ \mathbf{H}_0 &= (Emb(x_1), ... Emb(x_T)) \end{aligned}$$

Given a sequence of tokens: (

$$(x_1, ..., x_T)$$

$$\begin{aligned} \mathbf{H}_{i+1} &= FeedForward(A_{i+1}) \text{ and } A_{i+1} = SelfAttention(H_i) \quad \forall i \in [|1, L|] \\ \text{with} \quad SelfAttention(\mathbf{H}_i) = softmax(\frac{Q K^T}{\sqrt{\delta_K}})V \\ \mathbf{H}_0 &= (Emb(x_1), ... Emb(x_T)) \end{aligned}$$

- Residual Connection and Layer Norm are not included in those equations
- FeedForward is position-wise two layer MLP (i.e. applied independently from the position of each hidden vector)
- Self-Attention is actually a Multi-Head Self-Attention

Given a sequence of tokens:

$$(x_1, ..., x_T)$$

• All the Hidden states of the last layer are fed to a softmax

$$\hat{p_{y_t}} = softmax(h_t) \ \forall t \le T$$

Transformer for Sequence Classification

Transformer for Sequence Labeling & Classification

Initialization:

- We can initialize randomly all the parameters of the model
- Train it on the sequence labeling & classification task with backpropagation

Still

- In practice, Transformer underperforms LSTM models if we do that
- → Not if we initialize our model in a "smarter way"

Pretraining with Mask-Language-Modeling

Pretraining with Mask-Language-Modeling

Let's take a Transformer and Train it on a Language Modeling task

We would like to have a Bidirectional Model

→ We introduce Mask Language Modeling

Mask Language Modeling (MLM)

Given sequences of text, we change randomly 15% of tokens in each sequence

- 80% of cases we replace them with [MASK]
- 20% of cases we replace them with a random token of the vocabulary

MLM consists in predicting the changed tokens given the context (left and right)

Mask Language Modeling (MLM)

Given sequences of text, we switch randomly 15% of tokens in each sequence

- 80% of cases we replace them with [MASK]
- 20% of cases we replace them with a random token in the vocabulary

Transformer for MLM

- We train a large transformer: +12 layers
- On large dataset of raw text (+1GB up to 1TB) of text
- For many of steps: +100k steps

Transformer for MLM

- We train a large transformer: +12 layers
- On large dataset of raw text (+1GB up to 1TB) of text
- For many of steps: +100k steps

BERT, CamemBERT, Roberta, mBERT, XLM-R have been trained this way

- 1. We *pretrain* a transformer model as described
- 2. We append a task-specific Feed-Forward Layer on top
- 3. We fine-tune the model on the specific task (labeling or classification)

By fine-tuning, we simply mean keep training on the new labelled data after reusing all the parameters of the pretrained model

⇒ By doing this, we outperform LSTM models on ALL sequence labeling tasks

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Table: Performance of BERT vs. previous SOTA models on the GLUE benchmark (Devlin et. al 2018)

Intuition: Why does it work so well?

- Language Modeling is one of the most challenging NLP task
- By reusing the pretrained model, we re-use very rich "representation" of the input sequences
- By fine-tuning the model on a specific task, we adapt its parameters for the task

Hugging Face Hub

- In a few lines of python code
 - Download
 - Play
 - Fine-tune or Adapt
 - Share

+10000s pretrained Transformer models

Lecture Summary

- Probabilistic Framework for Sequence Labeling and Classification
- POS Tagging, NER and BoolQA Tasks
- Modeling those tasks with Recurrent Neural Network and Transformers
- Transfer Learning with Mask-Language-Modeling pretraining