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Lectures Outline

1. The Basics of Natural Language Processing (February 1st)

2. Representing Text with Vectors (February 1st)

3. Deep Learning Methods for NLP (February 8th)

4. Language Modeling (February 8th)

5. Sequence Labelling (Sequence Classification) (February 15th)

6. Sequence Generation Tasks (February 15th)
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Framework
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Framework
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Our goal is to estimate: 
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Framework
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Our goal is to estimate: 

We frame it as a classification task: 
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Sequence Generation Tasks
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● Machine Translation 

● Summarization 
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Machine Translation
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Given a sequence in one language → translate it in another language

Cats eat mice → Les chats mangent les souris

A lot of parallel data for this task from and to English

Harder to Translate Hawaiian to Swiss German than English to French
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Machine Translation
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Evaluating Sequence Generation Tasks Automatically is Challenging

Two Translations can be as good as each other

BLEU SCORE: 
● N-Gram-Based Evaluation metric
● It measures how much of the n-gram in the prediction appear in the 

reference translation
● 1 means the prediction is the same as the gold translation 
● 0 means there is no n-gram in common
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Summarization
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Summarization Evaluation
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Evaluating Summarization models is challenging

A Standard Metric is the ROUGE score

It measures how much the words (and/or n-grams) in the human 
reference summaries appeared in the machine generated summaries.
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Design Questions 

★ What output activation function and loss? 

★ What architecture? 

NB: Questions to ask for all NLP tasks modeled with Deep Learning 

12  
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Design Questions 

★ What output activation function and loss? 

Softmax and Cross Entropy 

★ What architecture? 

★ How do you represent a token to feed the model? 

13  
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What Architecture?

We want to model an output sequence conditioned on an input sequence

With deep learning, we do that with: a encoder-decoder model 

NB: also called “sequence to sequence” or “seq2seq” 

14  
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The Encoder-Decoder Paradigm

Intuition: 
● We know how to model a single sequence at a time with a DL model

E.g. with a LSTM or a Transformer
● Here we want to model two sequences together 

One conditioned on the other

15  
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The Encoder-Decoder Paradigm

Intuition: 
● We know how to model a single sequence at a time with a DL model

E.g. with a LSTM or a Transformer
● Here we want to model two sequences together 

One conditioned on the other

➔ Combine two Deep Learning Architectures together 

16  
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Encode input sequence

The Encoder-Decoder Paradigm

17  
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Encode input sequence

Decode target sequence 
given hidden states of  
the encoder

The Encoder-Decoder Paradigm

18  
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The Encoder-Decoder Paradigm

How to integrate (h1,..hT) in the decoder ? 

➔ It depends what architecture is chosen for the encoder and the 
decoder

19  
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The Encoder-Decoder Paradigm

How to integrate (h1,..hT) in the decoder ? 

➔ It depends what architecture is chosen for the encoder and the 
decoder

● RNN encoder-decoder (possibly with an Attention Mechanism)
● Transformer Model 

20  
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The Encoder-Decoder with RNNs

Recall: Vanilla RNN with L’ and time step sequence of length T’

21  
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The Encoder-Decoder with RNNs

22  

Decoder 
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The Encoder-Decoder with RNNs
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Decoder

● Decoder of with L’ layer, with parameters W’i, U’i, b’, Vi for all i
● It decodes sequentially the target sequence 
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The Encoder-Decoder with RNNs
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Decoder

● Decoder of with L’ layer, with parameters W’i, U’i, b’, Vi for all i
● It decodes sequentially the target sequence
● It is conditioned on the input sequence through the encoding output 
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The Encoder-Decoder with RNNs
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Decoder 

Encoder: also a RNN that encodes the input sequence in a fixed vector
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The Encoder-Decoder with RNNs

Simple RNN-based Encoder-Decoder Model: 

26  Diagram: Volta

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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The Encoder-Decoder Training
 
With Backpropagation 

1. We feed the model with both the input and output sequence 

2. We compute the loss based on the “gold“ output sequence 

3. We update all the parameters of the model with backpropagation 

27  Diagram: Volta

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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Limits: At test time in the encoder-decoder that we introduced
The input sequence has a fixed representation (    is fixed) 

The Encoder-Decoder with RNNs: Limits

28  
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Limits: At test time in the encoder-decoder that we introduced
The input sequence has a fixed representation (    is fixed) 

Example: 
Je vois un chat sur un matelas ⇒ I see a cat on a mat 

The Encoder-Decoder with RNNs: Limits

29  
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The Encoder-Decoder with RNNs: Limits

Limits: At test time in the encoder-decoder that we introduced
The input sequence has a fixed representation (    is fixed) 

Example: 
Je vois un chat sur un matelas ⇒ I see a cat on a mat 

Step 4: 
Given: Je vois un chat sur un matelas  ⇒ cat 
Step 7: 
Given: Je vois un chat sur un matelas ⇒ mat

30  
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The Encoder-Decoder with RNNs: Limits

Limits: At test time in the encoder-decoder that we introduced
The input sequence has a fixed representation (    is fixed) 

Example: 
Je vois un chat sur un matelas ⇒ I see a cat on a mat 

Step 4: 
Given: Je vois un chat sur un matelas  ⇒ cat 
Step 7: 
Given: Je vois un chat sur un matelas ⇒ mat

➔ We need “decoding-dependent” representation of the input sequence 31  
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How to build more flexible encoder-decoder?

Solution 1:
● Integrate an Attention Mechanism in a RNN-based encoder-decoder

Solution 2: 
● Use an Encoder-Decoder Transformer

NB: We detail only the latter solution

32  
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The Transformer Encoder-Decoder

Recall:  A Transformer encoder is a stack of 
● Self-Attention Layer 

that builds a contextual representation of the input sequence 
● Feed-Forward Layer 

33  
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Recall: Self-Attention Layers

34  
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The Transformer Encoder-Decoder

A Transformer Encoder-Decoder is: 

● A Transformer Encoder 

● Plugged to a Transformer Decoder 

35  
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The Transformer Encoder-Decoder

A Transformer Encoder-Decoder is: 

● A Transformer Encoder 

● Plugged to a Transformer Decoder 

● The connection between both being made with the self-attention layers

36  
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Transformer 
Encoder-Decoder

37  Vaswani et. al

https://arxiv.org/pdf/1706.03762.pdf
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Performance in Machine Translation

English To German

38
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Performance in Machine Translation

English To Vietnamese

39



Sequence Generation Tasks  - Machine Learning for NLP (6/6) - ENSAE Paris 2022  - Benjamin Muller 

Extension of the Encoder-Decoder Paradigm

40

Transfer Learning
● Similarly to BERT, it is possible to pretrain an encoder-decoder 

using some language-model-based objective (cf. BART, T5) 

Tasks:
● We have seen how to use an encoder-decoder for sequence 

generation tasks: We can also use encoder-decoder for sequence 
labeling/classification tasks (simply predict labels as tokens) 
(cf. T5)

https://arxiv.org/abs/1910.13461
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Lecture Summary

● Sequence to Sequence Tasks in NLP 

● Encoder-Decoder Approach (RNN-based, Transformers)

41  
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Challenges & Perspectives for NLP
Scaling Pretraining (model size, amount of data, modalities) leads 
to impressive empirical progress
● Better Task-Specific Performance for most NLP tasks
● Better Task-Specific Few-Shot Performance
● Better Cross-Lingual Transfer Performance 

Many Challenges Remain
● Integrate “Knowledge Base” with Large scale Language Models
● Potential Harmful Uses of those models (hateful content, biases…) 
● “Update” Language Models efficiently 
● Speed at test time & Cost of pretraining
● Evaluating Generative Models 42  


